class NeuralNetwork: def init(self, input_dim, hidden_dim, output_dim): self.input_dim = input_dim self.hidden_dim = hidden_dim self.output_dim = output_dim self.weights1 = np.random.randn(input_dim, hidden_dim) self.bias1 = np.zeros((1, hidden_dim)) self.weights2 = np.random.randn(hidden_dim, output_dim) self.bias2 = np.zeros((1, output_dim)) def relu(self, x): return np.maximum(0, x) def relu_derivative(self, x): return np.where(x >= 0, 1, 0) def forward(self, x): self.z1 = np.dot(x, self.weights1) + self.bias1 self.a1 = self.relu(self.z1) self.z2 = np.dot(self.a1, self.weights2) + self.bias2 self.y_hat = self.z2 return self.y_hat def backward(self, x, y, learning_rate): error = self.y_hat - y delta2 = error delta1 = np.dot(delta2, self.weights2.T) * self.relu_derivative(self.a1) grad_weights2 = np.dot(self.a1.T, delta2) grad_bias2 = np.sum(delta2, axis=0, keepdims=True) grad_weights1 = np.dot(x.T, delta1) grad_bias1 = np.sum(delta1, axis=0) self.weights2 -= learning_rate * grad_weights2 self.bias2 -= learning_rate * grad_bias2 self.weights1 -= learning_rate * grad_weights1 def mse_loss(self, y, y_hat): return np.mean((y - y_hat)**2) def sgd_optimizer(self, x, y, learning_rate): y_hat = self.forward(x) loss = self.mse_loss(y, y_hat) self.backward(x, y, learning_rate) return loss def train(self, x, y, learning_rate, num_epochs): for i in range(num_epochs): y_hat = self.forward(x) loss = np.mean(np.square(y_hat - y)) loss_history.append(loss) self.backward(X, y, y_hat, learning_rate) if i % 100 == 0: print('Epoch', i, '- Loss:', loss) return loss_history input_dim=13 hidden_dim=25 output=1 nn=NeuralNetwork(input_dim, hidden_dim, output_dim) learning_rate=0.05 num_epochs=2000 loss_history=nn.train(x, y, learning_rate, num_epochs)分析代码
时间: 2024-04-22 10:23:15 浏览: 197
这段代码实现了一个简单的神经网络,包含一个隐藏层和一个输出层。其中,init方法用于初始化网络的参数,包括输入层维度、隐藏层维度、输出层维度、权重和偏置等。relu方法实现了ReLU激活函数,用于在网络中进行非线性变换。forward方法用于前向传播,计算输出结果。backward方法用于反向传播,计算梯度并更新网络参数。mse_loss方法用于计算均方误差损失函数。sgd_optimizer方法用于使用随机梯度下降算法进行优化。train方法用于训练网络,迭代多次进行前向传播、反向传播和参数更新,同时记录损失值的变化。
在使用时,需要提供输入数据x和对应的标签y,以及学习率learning_rate和迭代次数num_epochs。在训练过程中,会不断更新网络的参数,使得网络的输出结果与标签y越来越接近,同时记录下损失值的变化。最终返回损失值的变化历史记录loss_history。
需要注意的是,在代码中存在一些错误,比如output变量应该是output_dim,backward方法的参数应该是y_hat而不是self.y_hat等。在使用时需要修正这些错误。
相关问题
class NeuralNetwork: def __init__(self, input_dim, hidden_dim, output_dim): self.input_dim = input_dim self.hidden_dim = hidden_dim self.output_dim = output_dim self.weights1 = np.random.randn(input_dim, hidden_dim) self.bias1 = np.zeros((1, hidden_dim)) self.weights2 = np.random.randn(hidden_dim, output_dim) self.bias2 = np.zeros((1, output_dim)) def relu(self, x): return np.maximum(0, x) def relu_derivative(self, x): return np.where(x >= 0, 1, 0) def forward(self, x): self.z1 = np.dot(x, self.weights1) + self.bias1 self.a1 = self.relu(self.z1) self.z2 = np.dot(self.a1, self.weights2) + self.bias2 self.y_hat = self.z2 return self.y_hat def backward(self, x, y, learning_rate): error = self.y_hat - y delta2 = error delta1 = np.dot(delta2, self.weights2.T) * self.relu_derivative(self.a1) grad_weights2 = np.dot(self.a1.T, delta2) grad_bias2 = np.sum(delta2, axis=0, keepdims=True) grad_weights1 = np.dot(x.T, delta1) grad_bias1 = np.sum(delta1, axis=0) self.weights2 -= learning_rate * grad_weights2 self.bias2 -= learning_rate * grad_bias2 self.weights1 -= learning_rate * grad_weights1 根据代码加上损失函数
好的,如果要加上损失函数的话,可以在backward方法中计算损失函数对网络输出的导数,然后将其与之前计算得到的delta2相乘得到最终的delta2。常见的损失函数有均方误差(MSE)和交叉熵(Cross Entropy)等,下面以MSE为例:
```
def mse_loss_derivative(self, y):
return 2*(self.y_hat - y) / self.output_dim
def backward(self, x, y, learning_rate):
error = self.y_hat - y
delta2 = self.mse_loss_derivative(y) * self.relu_derivative(self.z2) # 加上损失函数的导数
delta1 = np.dot(delta2, self.weights2.T) * self.relu_derivative(self.a1)
grad_weights2 = np.dot(self.a1.T, delta2)
grad_bias2 = np.sum(delta2, axis=0, keepdims=True)
grad_weights1 = np.dot(x.T, delta1)
grad_bias1 = np.sum(delta1, axis=0)
self.weights2 -= learning_rate * grad_weights2
self.bias2 -= learning_rate * grad_bias2
self.weights1 -= learning_rate * grad_weights1
self.bias1 -= learning_rate * grad_bias1
```
在这里,mse_loss_derivative方法计算了MSE损失函数对网络输出的导数,然后在计算delta2时将其与ReLU函数的导数相乘得到最终的delta2。接下来,该方法与之前的backward方法相同,计算梯度并更新参数。
class NeuralNetwork: def init(self, input_dim, hidden_dim, output_dim): self.input_dim = input_dim self.hidden_dim = hidden_dim self.output_dim = output_dim self.weights1 = np.random.randn(input_dim, hidden_dim) self.bias1 = np.zeros((1, hidden_dim)) self.weights2 = np.random.randn(hidden_dim, output_dim) self.bias2 = np.zeros((1, output_dim)) def relu(self, x): return np.maximum(0, x) def relu_derivative(self, x): return np.where(x >= 0, 1, 0) def forward(self, x): self.z1 = np.dot(x, self.weights1) + self.bias1 self.a1 = self.relu(self.z1) self.z2 = np.dot(self.a1, self.weights2) + self.bias2 self.y_hat = self.z2 return self.y_hat def backward(self, x, y, learning_rate): error = self.y_hat - y delta2 = error delta1 = np.dot(delta2, self.weights2.T) * self.relu_derivative(self.a1) grad_weights2 = np.dot(self.a1.T, delta2) grad_bias2 = np.sum(delta2, axis=0, keepdims=True) grad_weights1 = np.dot(x.T, delta1) grad_bias1 = np.sum(delta1, axis=0) self.weights2 -= learning_rate * grad_weights2 self.bias2 -= learning_rate * grad_bias2 self.weights1 -= learning_rate * grad_weights1 根据代码加上损失函数和优化
函数,可以将这个神经网络变为完整的模型。一种常见的损失函数是均方误差(Mean Squared Error),可以用于回归问题:
```python
class NeuralNetwork:
def __init__(self, input_dim, hidden_dim, output_dim):
self.input_dim = input_dim
self.hidden_dim = hidden_dim
self.output_dim = output_dim
self.weights1 = np.random.randn(input_dim, hidden_dim)
self.bias1 = np.zeros((1, hidden_dim))
self.weights2 = np.random.randn(hidden_dim, output_dim)
self.bias2 = np.zeros((1, output_dim))
def relu(self, x):
return np.maximum(0, x)
def relu_derivative(self, x):
return np.where(x >= 0, 1, 0)
def forward(self, x):
self.z1 = np.dot(x, self.weights1) + self.bias1
self.a1 = self.relu(self.z1)
self.z2 = np.dot(self.a1, self.weights2) + self.bias2
self.y_hat = self.z2
return self.y_hat
def backward(self, x, y, learning_rate):
error = self.y_hat - y
delta2 = error
delta1 = np.dot(delta2, self.weights2.T) * self.relu_derivative(self.a1)
grad_weights2 = np.dot(self.a1.T, delta2)
grad_bias2 = np.sum(delta2, axis=0, keepdims=True)
grad_weights1 = np.dot(x.T, delta1)
grad_bias1 = np.sum(delta1, axis=0)
self.weights2 -= learning_rate * grad_weights2
self.bias2 -= learning_rate * grad_bias2
self.weights1 -= learning_rate * grad_weights1
self.bias1 -= learning_rate * grad_bias1
def mse_loss(self, y, y_hat):
return np.mean((y - y_hat)**2)
def sgd_optimizer(self, x, y, learning_rate):
y_hat = self.forward(x)
loss = self.mse_loss(y, y_hat)
self.backward(x, y, learning_rate)
return loss
```
在这个模型中,我们添加了 `mse_loss` 函数,用于计算均方误差,同时添加了 `sgd_optimizer` 函数,用于执行随机梯度下降优化算法。在每次迭代中,我们计算预测值 `y_hat`,然后计算损失值并执行反向传播算法更新神经网络的权重和偏置。最后,我们返回损失值作为当前迭代的结果。根据需要,我们可以使用其他损失函数和优化器来训练这个神经网络。
阅读全文