logistic预测人口 python
时间: 2024-11-13 14:16:20 浏览: 7
Logistic回归是一种用于二分类问题的统计模型,也可以用来预测概率。在Python中,我们可以使用scikit-learn库来进行logistic回归分析,特别是预测人口增长等现象。以下是使用Python进行logistic回归的基本步骤:
1. 导入所需库:
```python
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, confusion_matrix
```
2. 加载数据集并预处理:
```python
# 假设data.csv是一个包含人口特征和对应结果的数据文件
data = pd.read_csv('data.csv')
X = data.drop('population_growth', axis=1) # 特征
y = data['population_growth'] # 目标变量
```
3. 划分训练集和测试集:
```python
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
```
4. 创建并训练模型:
```python
model = LogisticRegression()
model.fit(X_train, y_train)
```
5. 预测新数据:
```python
predictions = model.predict(X_test)
```
6. 评估模型性能:
```python
accuracy = accuracy_score(y_test, predictions)
conf_mat = confusion_matrix(y_test, predictions)
print("Accuracy:", accuracy)
```
阅读全文