实现手写数字的识别,使用MNIST数据集内容完成手写数字识别 步骤: 1.准备数据 2.构建模型 3.损失函数 4.模型训练 5.模型的保存和加载 6.模型的评估:损失和准确率 train_batch_size = 64 test_batch_size = 1000 train和test分别训练10次 用python代码回答上述问题,并且在最后给出300字的实验总结
时间: 2024-02-28 14:53:23 浏览: 63
以下是手写数字识别的Python代码实现:
```python
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
# 准备数据
transform = transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))])
trainset = torchvision.datasets.MNIST(root='./data', train=True,
download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=64,
shuffle=True, num_workers=2)
testset = torchvision.datasets.MNIST(root='./data', train=False,
download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=1000,
shuffle=False, num_workers=2)
# 构建模型
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 4 * 4, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = self.pool(torch.relu(self.conv1(x)))
x = self.pool(torch.relu(self.conv2(x)))
x = x.view(-1, 16 * 4 * 4)
x = torch.relu(self.fc1(x))
x = torch.relu(self.fc2(x))
x = self.fc3(x)
return x
net = Net()
# 损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
# 模型训练
for epoch in range(10): # 多次训练
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
inputs, labels = data
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
if i % 100 == 99: # 每100个batch输出一次loss
print('[%d, %5d] loss: %.3f' %
(epoch + 1, i + 1, running_loss / 100))
running_loss = 0.0
print('Finished Training')
# 模型的保存和加载
PATH = './mnist_net.pth'
torch.save(net.state_dict(), PATH)
net.load_state_dict(torch.load(PATH))
# 模型评估
correct = 0
total = 0
with torch.no_grad():
for data in testloader:
images, labels = data
outputs = net(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy of the network on the 10000 test images: %d %%' % (
100 * correct / total))
```
实验总结:
通过使用MNIST数据集,我们实现了手写数字的识别模型。我们首先准备了训练集和测试集,并使用transforms对数据进行了预处理。然后我们构建了一个卷积神经网络模型,使用交叉熵损失函数和随机梯度下降优化器进行模型训练。在训练过程中,我们每100个batch输出一次loss,同时使用测试集对模型进行了评估。最后,我们将训练好的模型保存到本地,并在需要时进行加载和使用。通过实验,我们得到了模型在测试集上的准确率,证明了该模型的有效性。
阅读全文