一:实验要求 构造一个三层的 BP 神经网络,用 C++ 完成手写 0-9 数字的识别 二:实验步骤 1. 从网上下载 MNIST 数据集(http://yann.lecun.com/exdb/mnist/) 2. 设计神经网络的结构 3. 包含 3 层,输入层,隐层

时间: 2024-06-09 15:12:36 浏览: 12
和输出层,每层分别有多个神经元。输入层有 784 个神经元,隐层可以自己定义,输出层有 10 个神经元,分别代表数字 0 ~ 9。 4. 编写代码完成神经网络的训练和测试。在训练的过程中,需要定义合适的损失函数和优化方法。在测试的过程中,需要将测试集输入网络,并判断网络的输出与实际值是否一致。 三:实验要点 1. 掌握神经网络的基本结构和原理。 2. 熟悉神经网络的训练和测试流程。 3. 实现 BP 算法,完成手写数字的识别。
相关问题

python使用mnist数据集构造一个三层的bp神经网络,完成手写0-9数字的识别

使用Python可以使用TensorFlow或者PyTorch等机器学习框架来构建一个三层的BP神经网络,用于识别手写0-9数字。首先需要导入mnist数据集,然后对数据进行预处理,包括归一化、分割训练集和测试集等步骤。 接着可以构建神经网络模型,三层的神经网络包括输入层、隐藏层和输出层。输入层的节点数对应于mnist数据集的特征数,隐藏层的节点数可以根据实际情况进行调整,一般是使用多个神经元形成一个隐藏层,输出层的节点数为10,对应着0-9十个数字的分类。然后通过激活函数(如ReLU或Sigmoid)来引入非线性,使用反向传播算法来更新网络中的参数,以使损失函数最小化。 在训练完成后,可以使用测试集来评估模型的性能,查看模型对手写数字的识别精度。 整个过程中需要注意的是超参数的选择,在训练过程中可以通过交叉验证等方法来进行调参,以优化模型的性能。 总的来说,使用Python构建一个三层的BP神经网络来识别手写0-9数字,需要导入数据集、构建模型、训练模型并进行参数优化,最终得到一个能够准确识别手写数字的神经网络模型。

构造一个三层的bp神经网络,完成手写0-9数字的识别

### 回答1: 好的,我可以帮您构造一个三层的BP神经网络,用于手写数字的识别。首先,我们需要准备一个数据集,包含手写数字的图像和对应的标签。然后,我们可以按照以下步骤来构建神经网络: 1. 输入层:将每个图像展开成一个向量,作为神经网络的输入。 2. 隐藏层:我们可以选择使用多个隐藏层,每个隐藏层包含多个神经元。每个神经元都会对输入进行加权和,并通过一个激活函数(如sigmoid函数)进行非线性变换。通过多个隐藏层的组合,神经网络可以学习到更加复杂的特征。 3. 输出层:最后一层是输出层,包含10个神经元,分别对应数字-9。每个神经元的输出表示该数字的概率。我们可以使用softmax函数将这些概率归一化,得到最终的预测结果。 4. 训练:我们可以使用反向传播算法来训练神经网络。首先,我们需要定义一个损失函数,衡量预测结果与真实标签之间的差距。然后,我们可以使用梯度下降算法来最小化损失函数,调整神经网络中每个神经元的权重和偏置,使得预测结果更加接近真实标签。 通过反复迭代训练,我们可以不断优化神经网络的性能,提高手写数字的识别准确率。 ### 回答2: BP神经网络是一种多层前向反馈神经网络,是当前最为常用的神经网络之一。它的训练算法基于梯度下降法,且在多类分类问题中表现良好。在手写数字识别问题中,我们可以构造一个三层的BP神经网络,用于分类识别手写数字。 一、数据预处理 在构造神经网络之前,我们需要对数据进行预处理。我们可以使用MNIST数据集作为我们的训练集,其中包含60,000个训练样本和10,000个测试样本。每个样本都是28x28像素的黑白手写数字图像。我们需要将这些图像转化为一维向量,并将其标准化为[-1,1]之间的值。 二、构造三层BP神经网络 我们使用三层BP神经网络,包括输入层、隐藏层和输出层。输入层的神经元数量为784(28 x 28像素),隐藏层的神经元数量为256,输出层的神经元数量为10(代表0到9十个数字)。我们通过调试和实验,选择了学习率(learning rate)0.1,迭代次数(epoch)为500次。 1. 初始化权重和偏置 我们创建一个权重矩阵(weights)和一个偏置矩阵(bias),用于连接输入层和隐藏层,以及隐藏层和输出层的神经元。我们初始化这些矩阵为小的随机值。 2. 前向传播 前向传播是指输入数据(图像向量)从输入层流向输出层的过程。在前向传播过程中,我们计算每个神经元的加权和,再将其转化为输出值。具体公式如下: 输出值 = sigmoid(加权和 + 偏置) 其中,sigmoid函数如下: sigmoid(x) = 1/(1 + e^-x) 3. 反向传播 反向传播是计算误差并利用误差来更新权重和偏置的过程。我们可以通过比较目标标签值和输出值来计算误差。误差通常使用交叉熵(cross-entropy)函数来计算。具体公式如下: L(y, hat{y}) = -1/N Σ(y * log(hat{y}) + (1 - y) * log(1 - hat{y})) 其中,y表示目标标签值,hat{y}表示神经网络输出值。 我们使用梯度下降法来计算每个参数的梯度,并利用梯度更新权重和偏置。具体公式如下: W = W - learning_rate * (dL/dW) b = b - learning_rate * (dL/db) 其中W表示权重,b表示偏置,learning_rate表示学习率,dL/dW和dL/db分别表示损失函数L关于W和b的偏导数。 三、模型优化 我们可以通过以下几种方法来优化模型的训练效果。 1. 正则化 正则化是一种防止过拟合的方法,可以增加模型的泛化能力。我们可以添加一个L2正则化项到损失函数中,限制神经网络中每个权重的大小。 2. 防止过拟合 过拟合是一种常见的问题。我们可以通过添加dropout或者早停(early stopping)来防止模型过拟合。dropout是指在训练过程中随机屏蔽一些神经元,防止模型对某些特征过分依赖。早停是指在训练过程中,在验证集的性能没有提升时停止训练,防止模型继续调整参数而导致过拟合。 3. 选择不同的 ### 回答3: BP神经网络是一种常见的人工神经网络模型,用于解决分类、回归等问题。该神经网络中包含输入层、隐藏层和输出层三层。构造一个三层的BP神经网络,完成手写0-9数字的识别,需要以下步骤: 1. 数据预处理:收集足够的手写数字图片,并进行灰度化、二值化等操作,统一图片大小和格式,将处理后的图片转化为数字的矩阵表示。 2. 神经网络结构设计:根据数据预处理得到的矩阵表示,确定输入层的节点数;根据分类问题的复杂度,确定隐藏层的节点数;根据分类问题的类别数,确定输出层的节点数。 3. 设计权重矩阵和偏置:根据输入层、隐藏层和输出层的节点数,设计对应权重矩阵和偏置;初始化权重矩阵和偏置,并进行调整,以达到较好的分类效果。 4. 前向传播:将处理后的图片矩阵输入到模型的输入层,经过隐藏层的计算,并考虑偏置、激活函数等因素,得到输出层的结果。 5. 反向传播:根据输出层的结果与实际类别之间的误差,计算损失函数,并更新权重矩阵和偏置,以提高分类精度。 6. 重复训练和测试:对于一定数量的训练数据,反复进行前向传播和反向传播,以提高分类精度;对于另外一定数量的测试数据,进行预测和评估,以检查模型的泛化能力。 7. 模型保存和应用:经过一定数量的训练和测试,选择较好的模型并保存,以备以后应用于实际问题。对于新的手写数字图片,按照相同的流程进行预处理和前向传播,即可得到识别结果。 总之,构建一个有效的三层BP神经网络,需要针对具体问题进行细致的数据处理、结构设计、权重矩阵和偏置调整等步骤,以获得较好的分类效果。

相关推荐

zip
神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源
zip
神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源 神经网络相关资源

最新推荐

recommend-type

Python实现的三层BP神经网络算法示例

三层BP神经网络是一种广泛应用的人工神经网络模型,用于解决非线性分类和回归问题。它由输入层、隐藏层和输出层组成,其中输入层接收数据,隐藏层处理信息,而输出层则产生最终的预测结果。在Python中实现这样的神经...
recommend-type

MATLAB 人工智能实验设计 基于BP神经网络的鸢尾花分类器设计

了解分类问题的概念以及基于BP神经网络设计分类器的基本流程。 二、实验平台 MatLab/Simulink仿真平台。 三、实验内容和步骤 1. iris数据集简介 iris数据集的中文名是安德森鸢尾花卉数据集,英文全称是Anderson's ...
recommend-type

神经网络的实验步骤详细分析具体-神经网络大作业(一).doc

神经网络的实验步骤详细分析具体-神经网络大作业(一).doc 本人做的神经网络的实验,步骤详细,分析具体,适合做入门学习用-I do neural network experiments, the steps detailed analysis of specific, ...
recommend-type

Python:客运量与货运量预测-BP神经网络

像一般神经网络一样,BP神经网络先进行FP传导即正向传导,案例中只设置了一层隐含层,所以参数层有两层:w1,b1;w2,b2;W参数矩阵的行列:行为输出层的神经元个数,列是输入层的神经元个数。 隐含层的结果:O1=sigmoid...
recommend-type

BP神经网络优秀论文1.pdf

这是BP网络算法的一些论文,仅有一篇。这是自己打美赛时留下来的东西,大家可以参考它的模板和一些大标题的英文写法。这篇应该是O奖的。
recommend-type

BSC绩效考核指标汇总 (2).docx

BSC(Balanced Scorecard,平衡计分卡)是一种战略绩效管理系统,它将企业的绩效评估从传统的财务维度扩展到非财务领域,以提供更全面、深入的业绩衡量。在提供的文档中,BSC绩效考核指标主要分为两大类:财务类和客户类。 1. 财务类指标: - 部门费用的实际与预算比较:如项目研究开发费用、课题费用、招聘费用、培训费用和新产品研发费用,均通过实际支出与计划预算的百分比来衡量,这反映了部门在成本控制上的效率。 - 经营利润指标:如承保利润、赔付率和理赔统计,这些涉及保险公司的核心盈利能力和风险管理水平。 - 人力成本和保费收益:如人力成本与计划的比例,以及标准保费、附加佣金、续期推动费用等与预算的对比,评估业务运营和盈利能力。 - 财务效率:包括管理费用、销售费用和投资回报率,如净投资收益率、销售目标达成率等,反映公司的财务健康状况和经营效率。 2. 客户类指标: - 客户满意度:通过包装水平客户满意度调研,了解产品和服务的质量和客户体验。 - 市场表现:通过市场销售月报和市场份额,衡量公司在市场中的竞争地位和销售业绩。 - 服务指标:如新契约标保完成度、续保率和出租率,体现客户服务质量和客户忠诚度。 - 品牌和市场知名度:通过问卷调查、公众媒体反馈和总公司级评价来评估品牌影响力和市场认知度。 BSC绩效考核指标旨在确保企业的战略目标与财务和非财务目标的平衡,通过量化这些关键指标,帮助管理层做出决策,优化资源配置,并驱动组织的整体业绩提升。同时,这份指标汇总文档强调了财务稳健性和客户满意度的重要性,体现了现代企业对多维度绩效管理的重视。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【进阶】Flask中的会话与用户管理

![python网络编程合集](https://media.geeksforgeeks.org/wp-content/uploads/20201021201514/pythonrequests.PNG) # 2.1 用户注册和登录 ### 2.1.1 用户注册表单的设计和验证 用户注册表单是用户创建帐户的第一步,因此至关重要。它应该简单易用,同时收集必要的用户信息。 * **字段设计:**表单应包含必要的字段,如用户名、电子邮件和密码。 * **验证:**表单应验证字段的格式和有效性,例如电子邮件地址的格式和密码的强度。 * **错误处理:**表单应优雅地处理验证错误,并提供清晰的错误消
recommend-type

卷积神经网络实现手势识别程序

卷积神经网络(Convolutional Neural Network, CNN)在手势识别中是一种非常有效的机器学习模型。CNN特别适用于处理图像数据,因为它能够自动提取和学习局部特征,这对于像手势这样的空间模式识别非常重要。以下是使用CNN实现手势识别的基本步骤: 1. **输入数据准备**:首先,你需要收集或获取一组带有标签的手势图像,作为训练和测试数据集。 2. **数据预处理**:对图像进行标准化、裁剪、大小调整等操作,以便于网络输入。 3. **卷积层(Convolutional Layer)**:这是CNN的核心部分,通过一系列可学习的滤波器(卷积核)对输入图像进行卷积,以
recommend-type

BSC资料.pdf

"BSC资料.pdf" 战略地图是一种战略管理工具,它帮助企业将战略目标可视化,确保所有部门和员工的工作都与公司的整体战略方向保持一致。战略地图的核心内容包括四个相互关联的视角:财务、客户、内部流程和学习与成长。 1. **财务视角**:这是战略地图的最终目标,通常表现为股东价值的提升。例如,股东期望五年后的销售收入达到五亿元,而目前只有一亿元,那么四亿元的差距就是企业的总体目标。 2. **客户视角**:为了实现财务目标,需要明确客户价值主张。企业可以通过提供最低总成本、产品创新、全面解决方案或系统锁定等方式吸引和保留客户,以实现销售额的增长。 3. **内部流程视角**:确定关键流程以支持客户价值主张和财务目标的实现。主要流程可能包括运营管理、客户管理、创新和社会责任等,每个流程都需要有明确的短期、中期和长期目标。 4. **学习与成长视角**:评估和提升企业的人力资本、信息资本和组织资本,确保这些无形资产能够支持内部流程的优化和战略目标的达成。 绘制战略地图的六个步骤: 1. **确定股东价值差距**:识别与股东期望之间的差距。 2. **调整客户价值主张**:分析客户并调整策略以满足他们的需求。 3. **设定价值提升时间表**:规划各阶段的目标以逐步缩小差距。 4. **确定战略主题**:识别关键内部流程并设定目标。 5. **提升战略准备度**:评估并提升无形资产的战略准备度。 6. **制定行动方案**:根据战略地图制定具体行动计划,分配资源和预算。 战略地图的有效性主要取决于两个要素: 1. **KPI的数量及分布比例**:一个有效的战略地图通常包含20个左右的指标,且在四个视角之间有均衡的分布,如财务20%,客户20%,内部流程40%。 2. **KPI的性质比例**:指标应涵盖财务、客户、内部流程和学习与成长等各个方面,以全面反映组织的绩效。 战略地图不仅帮助管理层清晰传达战略意图,也使员工能更好地理解自己的工作如何对公司整体目标产生贡献,从而提高执行力和组织协同性。