可以帮我用pytorch分别写一个BP神经网络和卷积神经网络应用到手写数字识别器的代码吗

时间: 2023-04-10 19:00:59 浏览: 72
当然可以,以下是BP神经网络和卷积神经网络应用到手写数字识别器的代码: BP神经网络: ```python import torch import torch.nn as nn import torch.optim as optim from torchvision import datasets, transforms # 定义超参数 batch_size = 64 learning_rate = 0.01 num_epochs = 10 # 加载数据集 train_dataset = datasets.MNIST(root='./data', train=True, transform=transforms.ToTensor(), download=True) test_dataset = datasets.MNIST(root='./data', train=False, transform=transforms.ToTensor(), download=True) train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True) test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=False) # 定义模型 class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.fc1 = nn.Linear(784, 512) self.fc2 = nn.Linear(512, 256) self.fc3 = nn.Linear(256, 10) self.relu = nn.ReLU() def forward(self, x): x = x.view(-1, 784) x = self.relu(self.fc1(x)) x = self.relu(self.fc2(x)) x = self.fc3(x) return x # 实例化模型和损失函数 model = Net() criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(model.parameters(), lr=learning_rate) # 训练模型 for epoch in range(num_epochs): for i, (images, labels) in enumerate(train_loader): optimizer.zero_grad() outputs = model(images) loss = criterion(outputs, labels) loss.backward() optimizer.step() if (i+1) % 100 == 0: print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, i+1, len(train_loader), loss.item())) # 测试模型 model.eval() with torch.no_grad(): correct = 0 total = 0 for images, labels in test_loader: outputs = model(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print('Accuracy of the network on the 10000 test images: {} %'.format(100 * correct / total)) ``` 卷积神经网络: ```python import torch import torch.nn as nn import torch.optim as optim from torchvision import datasets, transforms # 定义超参数 batch_size = 64 learning_rate = 0.01 num_epochs = 10 # 加载数据集 train_dataset = datasets.MNIST(root='./data', train=True, transform=transforms.ToTensor(), download=True) test_dataset = datasets.MNIST(root='./data', train=False, transform=transforms.ToTensor(), download=True) train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True) test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=False) # 定义模型 class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 32, kernel_size=5, padding=2) self.conv2 = nn.Conv2d(32, 64, kernel_size=5, padding=2) self.fc1 = nn.Linear(7*7*64, 1024) self.fc2 = nn.Linear(1024, 10) self.relu = nn.ReLU() self.pool = nn.MaxPool2d(kernel_size=2, stride=2) def forward(self, x): x = self.pool(self.relu(self.conv1(x))) x = self.pool(self.relu(self.conv2(x))) x = x.view(-1, 7*7*64) x = self.relu(self.fc1(x)) x = self.fc2(x) return x # 实例化模型和损失函数 model = Net() criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(model.parameters(), lr=learning_rate) # 训练模型 for epoch in range(num_epochs): for i, (images, labels) in enumerate(train_loader): optimizer.zero_grad() outputs = model(images) loss = criterion(outputs, labels) loss.backward() optimizer.step() if (i+1) % 100 == 0: print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, i+1, len(train_loader), loss.item())) # 测试模型 model.eval() with torch.no_grad(): correct = 0 total = 0 for images, labels in test_loader: outputs = model(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print('Accuracy of the network on the 10000 test images: {} %'.format(100 * correct / total)) ```

相关推荐

zip
【资源说明】 基于Python.Numpy实现BP卷积神经网络识别手写数字源码(含超详细注释+使用说明).zip 文件夹结构功能 1.文件夹 - data:mnist手写数字数据集,包含训练、测试数据 - parameters:神经网络训练结果保存路径 - figure:该文档中的图片 2.文件 - activate.py:激活函数层,包含Sigmoid,SoftMax - bp.py:BP神经网络层,全连接层 - BPmain.py:BP神经网络测试文件 - CNNmain.py:卷积神经网络测试文件 - conv.py:卷积层 - load_mnist.py:mnist数据加载 - module.py:网络层、结构接口定义 - pool.py:池化层 - saveandread.py:神经网络参数保存加载 # 三、项目运行 ## 1.BP神经网络测试 1.1测试目标 - 使用BP神经网络对数据进行分类 1.2测试方式 - 运行BPmain.py文件 1.3测试结果 - 1.训练完成后输出如下 bash 开始训练: 2023-02-18 20:16:09.905283 训练已完成练100% 结束训练: 2023-02-18 20:16:56.179266 - 2.测试结果如下图所示,可以看到,神经网络可以将红点与蓝点进行分类 ![](./figure/Figure_1.png) - 3.训练误差如下图所示,可以看到,训练过程中误差在不断缩小 ![](./figure/Figure_2.png) ## 2.卷积神经网络测试 2.1测试目标 - 使用卷积神经网络识别手写数字 2.2测试方式 - 运行CNNmain.py文件 2.3测试结果 - 1.训练完成后输出如下 bash 第1次训练开始: 2023-02-18 18:45:01.447278 训练已完成100% 第1次训练结束: 2023-02-18 19:39:28.603512 测试已完成100% 第1次测试结束: 2023-02-18 19:43:05.641130 第1次训练正确率:66.28% 第2次训练开始: 2023-02-18 19:43:05.651106 训练已完成100% 第2次训练结束: 2023-02-18 20:46:34.102317 测试已完成100% 第2次测试结束: 2023-02-18 20:51:22.949554 第2次训练正确率:82.46% 第3次训练开始: 2023-02-18 20:51:22.957532 ... - 2.训练后测试正确率如下图所示,可以看到,随着训练次数增加,正确率在不断提高 ![](./figure/Figure_3.png) ## 3.CNN参数读取测试 3.1测试目标 - 读取训练时保存的参数数据进行数字识别 3.2测试方式 - 运行saveandread.py文件 3.3测试结果 - 1.测试结果如下图所示,可以看到,神经网络可以正确的识别手写数字 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载使用,也适合小白学习进阶,当然也可作为毕设项目、课程设计、作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可直接用于毕设、课设、作业等。 欢迎下载,沟通交流,互相学习,共同进步!

最新推荐

recommend-type

PyTorch上搭建简单神经网络实现回归和分类的示例

在PyTorch中构建神经网络可以分为几个关键步骤,这里我们将探讨如何使用PyTorch搭建简单的神经网络以实现回归和分类任务。 首先,我们需要了解PyTorch的基本组件。其中,`torch.Tensor`是核心数据结构,它类似于...
recommend-type

使用卷积神经网络(CNN)做人脸识别的示例代码

卷积神经网络(CNN)在人脸识别领域的应用已经成为现代计算机视觉技术的重要组成部分。相较于早期的人脸识别算法,如特征脸法,CNN以其强大的特征提取能力和自动学习能力,显著提升了人脸识别的准确性和效率。特征脸...
recommend-type

pytorch下使用LSTM神经网络写诗实例

在本文中,我们将探讨如何使用PyTorch实现一个基于LSTM(Long Short-Term Memory)神经网络的诗歌生成系统。LSTM是一种递归神经网络(RNN)变体,特别适合处理序列数据,如文本,因为它能有效地捕获长期依赖性。 ...
recommend-type

Pytorch实现的手写数字mnist识别功能完整示例

Pytorch是一个流行的深度学习框架,它提供了丰富的工具和库来帮助开发者构建和训练复杂的神经网络。在本示例中,我们将讨论如何使用Pytorch实现手写数字的识别,特别是针对MNIST数据集。MNIST数据集包含了60000个...
recommend-type

pytorch 利用lstm做mnist手写数字识别分类的实例

在本实例中,我们将探讨如何使用PyTorch构建一个基于LSTM(长短期记忆网络)的手写数字识别模型,以解决MNIST数据集的问题。MNIST数据集包含大量的手写数字图像,通常用于训练和测试计算机视觉算法,尤其是深度学习...
recommend-type

图书大厦会员卡管理系统:功能设计与实现

本资源是一份C语言实训题目,目标是设计一个图书大厦的会员卡管理程序,旨在实现会员卡的全流程管理。以下是详细的知识点: 1. **会员卡管理**: - 该程序的核心功能围绕会员卡进行,包括新会员的注册(录入姓名、身份证号、联系方式并分配卡号),以及会员信息的维护(修改、续费、消费结算、退卡、挂失)。 - **功能细节**: - **新会员登记**:收集并存储个人基本信息,如姓名、身份证号和联系方式。 - **信息修改**:允许管理员更新会员的个人信息。 - **会员续费**:通过卡号查询信息并计算折扣,成功续费后更新数据。 - **消费结算**:根据卡号查询消费记录,满1000元自动升级为VIP,并提供9折优惠。 - **退卡和挂失**:退卡时退还余额,删除会员信息;挂失则转移余额至新卡,原卡显示挂失状态。 - **统计功能**:按缴费总额和消费总额排序,显示所有会员的详细信息。 2. **软件开发过程**: - 遵循软件工程标准,需按照分析、设计、编码、调试和测试的步骤来开发程序。 - **菜单设计**:程序以菜单形式呈现,用户通过菜单选择操作项目,如选择录入、查询、挂失等。 3. **输入输出要求**: - 用户通过键盘输入数据,程序会提供清晰的提示信息,包括数据内容、格式和结束方式。 - 菜单界面清晰,包含各项功能选项,如“添加会员”、“查询信息”、“挂失处理”等。 4. **数据结构与函数设计**: - 使用`struct huiyuan`定义会员信息结构体,包含卡号、姓名、身份证号和电话号码字段。 - 设计`menu()`函数负责显示菜单,通过函数调用来执行不同操作的功能函数。 5. **优惠策略**: - 购书打折规则:满1000元享受95折,满2000元享受9折,满5000元享受8折。 通过这个C语言项目,学生将学习到如何运用结构体、函数、文件I/O以及用户交互等核心概念,实现一个实用的会员卡管理系统。同时,也将提升他们的编程逻辑思维、问题解决能力和项目管理能力。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Spring Boot框架测试实践:单元测试、集成测试、端到端测试(确保代码质量与稳定性)

![Spring Boot框架测试实践:单元测试、集成测试、端到端测试(确保代码质量与稳定性)](https://img-blog.csdnimg.cn/direct/70e2d215a77445048e72c56ddce5fa95.png) # 1. Spring Boot测试概述 Spring Boot测试是用于测试Spring Boot应用程序的全面测试框架。它提供了一套丰富的功能,使开发人员能够编写各种类型的测试,从单元测试到端到端测试。Spring Boot测试框架基于JUnit和Mockito等流行的测试库,并与Spring Boot应用程序的特性和功能进行了无缝集成。 通过使
recommend-type

转换json的方法是json.tojsonString

"toJsonString"并不是JSON本身的标准方法,它通常是在某些编程语言如Java中,使用特定库(如Jackson、Gson等)将JSON对象或结构转换成JSON字符串的函数。例如,在Java中,如果你有一个`ObjectMapper`实例,你可以这样做: ```java import com.fasterxml.jackson.databind.ObjectMapper; // 假设你有一个Pojo对象 MyClass obj = new MyClass(); ObjectMapper mapper = new ObjectMapper(); String jsonString
recommend-type

JAVA经典算法实战:月兔繁殖与素数判定

在Java编程中,经典算法题目的学习对于提升程序员的逻辑思维和解决问题的能力具有重要意义。以下是从提供的三个Java程序片段中提炼出的关键知识点: 1. 斐波那契数列问题: 题目涉及的是著名的斐波那契数列,它是一个经典的动态规划问题,特点是每一项都是前两项之和。第一个程序展示了如何使用递归方法实现,通过`exp2`类中的`f()`函数计算给定月份数的兔子总数。这里用到了递归公式 `f(x) = f(x-1) + f(x-2)`,该公式对应于序列1, 1, 2, 3, 5, 8, 13, 21...。递归函数设计巧妙地利用了自身调用,减少了重复计算。 2. 素数判断: 第二个程序涉及到判断101-200范围内的素数。素数是只有两个正因数(1和本身)的大于1的自然数。`math`类中的`iszhishu()`函数用于检测一个数是否为素数,它通过检查2到该数平方根之间的整数能否整除该数来判断。这是一种常见的素数检验方法,称为试除法。当找到能整除的因子时,返回`false`,否则如果循环结束都没有找到因子,返回`true`,表示该数是素数。 3. 水仙花数: 第三个程序提到的“水仙花数”是指那些每一位数字的立方和等于其本身的三位数,如153(1^3 + 5^3 + 3^3 = 153)。这里的算法没有直接给出,但提示了寻找这类数的思路,可能是遍历一定范围内的三位数,然后计算各位数字的立方和进行比较。这个题目考察了基本的数学概念和数据结构的使用,比如可能需要用到列表或者集合来存储和验证水仙花数。 这些Java代码示例涵盖了递归、动态规划(如斐波那契数列)、基本的数学逻辑(素数判定)以及简单的数据处理(如查找特定类型的数)。学习这些算法不仅可以提升编程技能,还能培养解决问题的策略,为后续的复杂编程挑战打下坚实的基础。同时,通过实际操作这些代码,程序员可以加深对Java语言特性和控制结构的理解。