帮我生成python代码用torch包,针对手写图像识别数据集,参考BP神经网络模型的代码,完成手写图像识别任务
时间: 2024-10-10 20:05:10 浏览: 21
PyTorch基于卷积神经网络识别RMB项目源代码+模型文件+数据集,采用python中的PyTorch实现图像识别
当使用PyTorch处理手写数字识别任务时,我们可以构建一个基本的BP(反向传播)神经网络模型,例如LeNet或类似结构。以下是一个简化的LeNet示例,用于MNIST手写数字数据集:
```python
import torch
import torch.nn as nn
import torchvision.datasets as datasets
import torchvision.transforms as transforms
# 数据预处理
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])
# 加载MNIST数据集
train_dataset = datasets.MNIST(root='./data', train=True, download=True, transform=transform)
test_dataset = datasets.MNIST(root='./data', train=False, download=True, transform=transform)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=64, shuffle=True)
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=64, shuffle=False)
# 定义LeNet模型
class LeNet(nn.Module):
def __init__(self):
super(LeNet, self).__init__()
self.conv1 = nn.Conv2d(1, 6, 5) # 卷积层1
self.pool = nn.MaxPool2d(2, 2) # 池化层
self.conv2 = nn.Conv2d(6, 16, 5) # 卷积层2
self.fc1 = nn.Linear(16 * 5 * 5, 120) # 全连接层1
self.fc2 = nn.Linear(120, 84) # 全连接层2
self.fc3 = nn.Linear(84, 10) # 输出层
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 16 * 5 * 5) # 展平
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
model = LeNet()
criterion = nn.CrossEntropyLoss() # 使用交叉熵损失函数
optimizer = torch.optim.SGD(model.parameters(), lr=0.001, momentum=0.9) # 使用SGD优化器
# 训练过程
num_epochs = 10
for epoch in range(num_epochs):
for images, labels in train_loader:
optimizer.zero_grad()
outputs = model(images)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
# 测试过程
model.eval()
with torch.no_grad():
correct = 0
total = 0
for images, labels in test_loader:
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print(f'Accuracy of the model on the 10000 test images: {100 * correct / total}%')
```
阅读全文