基于pytorch库使用BP神经网络完成MNIST手写字体的识别。
时间: 2023-12-30 17:04:17 浏览: 83
全C++自主实现的BP神经网络,以MNIST数据集作为训练和测试,实现手写数字识别。.zip
5星 · 资源好评率100%
好的,我可以回答这个问题。使用PyTorch库实现MNIST手写数字识别的BP神经网络可以分为以下几个步骤:
1.导入所需的库和数据集:
```python
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.datasets as datasets
import torchvision.transforms as transforms
# 加载数据集并进行预处理
train_dataset = datasets.MNIST(root='data/', train=True, transform=transforms.ToTensor(), download=True)
test_dataset = datasets.MNIST(root='data/', train=False, transform=transforms.ToTensor(), download=True)
# 定义数据加载器
train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=64, shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=64, shuffle=False)
```
2.定义BP神经网络模型:
```python
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.fc1 = nn.Linear(784, 512) # 输入层
self.fc2 = nn.Linear(512, 256) # 隐层
self.fc3 = nn.Linear(256, 10) # 输出层
def forward(self, x):
x = x.view(-1, 784) # 将输入张量展平为一维向量
x = nn.functional.relu(self.fc1(x)) # 应用ReLU激活函数
x = nn.functional.relu(self.fc2(x)) # 应用ReLU激活函数
x = self.fc3(x) # 输出层不需要激活函数
return x
```
3.定义损失函数和优化器:
```python
model = Net()
criterion = nn.CrossEntropyLoss() # 交叉熵损失函数
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9) # 随机梯度下降优化器
```
4.训练模型:
```python
for epoch in range(10): # 迭代次数为10
running_loss = 0.0
for i, data in enumerate(train_loader, 0):
inputs, labels = data
optimizer.zero_grad() # 梯度清零
outputs = model(inputs) # 前向传播
loss = criterion(outputs, labels) # 计算损失
loss.backward() # 反向传播
optimizer.step() # 更新参数
running_loss += loss.item()
if i % 100 == 99: # 每100个batch输出一次训练信息
print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 100))
running_loss = 0.0
print('Finished Training')
```
5.评估模型:
```python
correct = 0
total = 0
with torch.no_grad():
for data in test_loader:
images, labels = data
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy of the network on the 10000 test images: %d %%' % (100 * correct / total))
```
这样就完成了使用PyTorch库实现BP神经网络对MNIST手写数字进行识别的任务。
阅读全文