已知 x1(n)=3e-0.25n (-2<n<8) x2(n)=u(n+1) (-3<n<6) 求:x(n)=x1(n)*x2(n)
时间: 2023-12-25 08:04:24 浏览: 110
可以使用MATLAB中的代码实现:
```matlab
n1 = -2:8;
n2 = -3:6;
x1 = 3*exp(-0.25*n1);
x2 = [zeros(1,3),ones(1,10)];
n = n1(1):n2(end);
x1 = x1(1:length(n));
x2 = x2(1:length(n));
x = x1.*x2;
stem(n,x);
```
运行以上代码可以得到序列x(n)的样本:

相关问题
C语言实现y = 3E-17x6 - 4E-13x5 + 2E-09x4 - 3E-06x3 + 0.003x2 - 0.9036x + 153.45
在C语言中,你可以使用函数来实现这个多项式表达式。这里是一个简单的示例,我们将创建一个名为`polynomial`的函数,它接受两个参数(x的值和系数数组),然后返回对应的y值:
```c
#include <stdio.h>
#include <math.h>
double polynomial(double x, double coefficients[]) {
int i;
double y = 0;
for (i = 0; i <= 6; ++i) { // 遍历直到最高次幂+1
y += coefficients[i] * pow(x, i);
}
return y;
}
int main() {
const double coefficients[] = {3e-17, -4e-13, 2e-09, -3e-06, 3e-2, -903.6, 15345}; // 系数存储
double x_value = 1; // 可替换为你需要计算的x值
printf("y = %.2f\n", polynomial(x_value, coefficients)); // 输出结果
return 0;
}
```
在这个程序中,`coefficients`数组存储了多项式的各项系数,从最常数项开始。在`main`函数里,我们选择了一个x值(比如1,你可以修改它),然后调用`polynomial`函数并打印出结果。
已知序列 x(n)=2δ(n)+ 3δ(n-1)+δ(n-2) +4δ(n-3),其4点离散傅立叶变换为X(k),则当k=1时,X(1)=( )。
根据离散傅立叶变换的定义,有:
X(k) = Σ[n=0 to N-1] of x(n)*e^(-j2πkn/N)
代入序列 x(n) 和 k=1:
X(1) = 2e^(-j2π/N) + 3e^(-j2π/N)*e^(-j2π/N) + 1 + 4e^(-j2π/N)^3
化简得:
X(1) = 1 + 5cos(2π/N) + 3i*sin(2π/N)
其中,i为虚数单位。
所以,当k=1时,X(1)=1 + 5cos(2π/N) + 3i*sin(2π/N)。
阅读全文
相关推荐













