基于python代码,实现500个节点进行随机多项式,计算运行时间和所占内存,然后将节点分区按照四种方法分区之后,再次计算得出时间和内存的对比结果,并绘折线图对比
时间: 2024-03-11 11:50:45 浏览: 87
利用Python的强大数据处理功能,通过代码运行函数实现对3D随机数据的计算统计处理
好的,请稍等一下,我来为您解答。
首先,我们需要用 Python 生成 500 个随机多项式。这里我们使用 NumPy 库来生成随机数,并使用 SymPy 库来进行多项式运算。代码如下:
```python
import numpy as np
import sympy as sp
np.random.seed(0)
# 生成随机多项式
def generate_polynomials(num_polynomials, max_degree):
polynomials = []
for i in range(num_polynomials):
degree = np.random.randint(1, max_degree + 1)
coeffs = np.random.randint(-10, 10, degree)
x = sp.symbols('x')
poly = sp.Poly(coeffs.tolist()[::-1], x)
polynomials.append(poly)
return polynomials
polynomials = generate_polynomials(500, 10)
```
接下来,我们需要计算程序的运行时间和所占内存。这里我们可以使用 Python 内置的 time 和 memory_profiler 库来进行计时和内存监测。代码如下:
```python
import time
from memory_profiler import memory_usage
# 计算程序运行时间和所占内存
def calculate_time_and_memory_usage(func):
start_time = time.time()
memory_usage_before = memory_usage()[0]
result = func()
memory_usage_after = memory_usage()[0]
end_time = time.time()
time_usage = end_time - start_time
memory_usage = memory_usage_after - memory_usage_before
return time_usage, memory_usage, result
# 测试计算多项式的函数
def test_polynomials(polynomials):
results = []
for poly in polynomials:
result = poly.evalf(subs={'x': np.random.rand()})
results.append(result)
return results
# 计算未分区时的运行时间和内存占用
time_usage_1, memory_usage_1, _ = calculate_time_and_memory_usage(lambda: test_polynomials(polynomials))
print('Time usage (no partition):', time_usage_1)
print('Memory usage (no partition):', memory_usage_1)
```
接下来,我们将节点分区。这里我们使用四种常用的分区方法:等分法、负载均衡法、随机分配法和聚类法。代码如下:
```python
import math
from sklearn.cluster import KMeans
# 等分法
def partition_equally(num_partitions, nodes):
partitions = []
num_nodes_per_partition = math.ceil(len(nodes) / num_partitions)
for i in range(num_partitions):
start_index = i * num_nodes_per_partition
end_index = min((i + 1) * num_nodes_per_partition, len(nodes))
partition = nodes[start_index:end_index]
partitions.append(partition)
return partitions
# 负载均衡法
def partition_load_balanced(num_partitions, nodes, weights):
partitions = [[] for i in range(num_partitions)]
total_weight = sum(weights)
weight_per_partition = total_weight / num_partitions
current_partition_index = 0
current_partition_weight = 0
for i in range(len(nodes)):
node = nodes[i]
weight = weights[i]
if current_partition_weight + weight > weight_per_partition and current_partition_index < num_partitions - 1:
current_partition_index += 1
current_partition_weight = 0
partitions[current_partition_index].append(node)
current_partition_weight += weight
return partitions
# 随机分配法
def partition_randomly(num_partitions, nodes):
np.random.shuffle(nodes)
return partition_equally(num_partitions, nodes)
# 聚类法
def partition_by_clustering(num_partitions, nodes, features):
kmeans = KMeans(n_clusters=num_partitions)
kmeans.fit(features)
labels = kmeans.labels_
partitions = [[] for i in range(num_partitions)]
for i in range(len(nodes)):
node = nodes[i]
partition_index = labels[i]
partitions[partition_index].append(node)
return partitions
# 测试分区方法的运行时间和内存占用
num_partitions = 10
weights = np.random.rand(len(polynomials)) * 10
features = np.random.rand(len(polynomials), 2)
nodes = list(range(len(polynomials)))
time_usage_2, memory_usage_2, partitions = calculate_time_and_memory_usage(lambda: partition_equally(num_partitions, nodes))
time_usage_3, memory_usage_3, partitions = calculate_time_and_memory_usage(lambda: partition_load_balanced(num_partitions, nodes, weights))
time_usage_4, memory_usage_4, partitions = calculate_time_and_memory_usage(lambda: partition_randomly(num_partitions, nodes))
time_usage_5, memory_usage_5, partitions = calculate_time_and_memory_usage(lambda: partition_by_clustering(num_partitions, nodes, features))
print('Time usage (equally):', time_usage_2)
print('Memory usage (equally):', memory_usage_2)
print('Time usage (load balanced):', time_usage_3)
print('Memory usage (load balanced):', memory_usage_3)
print('Time usage (randomly):', time_usage_4)
print('Memory usage (randomly):', memory_usage_4)
print('Time usage (clustering):', time_usage_5)
print('Memory usage (clustering):', memory_usage_5)
```
最后,我们将结果绘制成折线图。这里我们使用 Matplotlib 库来进行绘图。代码如下:
```python
import matplotlib.pyplot as plt
# 绘制时间和内存占用的折线图
times = [time_usage_1, time_usage_2, time_usage_3, time_usage_4, time_usage_5]
memories = [memory_usage_1, memory_usage_2, memory_usage_3, memory_usage_4, memory_usage_5]
labels = ['No partition', 'Equally', 'Load balanced', 'Randomly', 'Clustering']
plt.plot(labels, times, label='Time')
plt.plot(labels, memories, label='Memory')
plt.legend()
plt.show()
```
这样,我们就完成了基于 Python 代码的 500 个节点随机多项式的计算、分区、运行时间和内存占用的对比,并绘制了折线图。
阅读全文