(1)根据下面的结构化格式构建一个文本文件,命名为:temperature.txt {year 1990 } {year 1991 { month jun } } {year 1992 { month jan ( 1 0 61.5) } {month feb (1 1 64) (2 2 65.2) } } {year 2000 {month feb (1 1 68 ) (2 3 66.66 ) ( 1 0 67.2)} {month dec (15 15 -9.2 ) (15 14 -8.8) (14 0 -2) } } 说明: a.至少构建一年的温度数据记录; b.一年中至少包含6个月的温度数据记录; c.至少有2个月的温度数据记录超过10天; d.至少有10天的温度数据记录超过20条,也就是记录了一天中的20个小时的温度值。 e.一天的温度记录值中最大值和最小值差不能超过20度 f.温度记录值必须在[-100,100]范围内 g.可以使用程序自动生成这样的数据,然后按照上面的格式写入到文本文件temperature.txt中。其中温度值可以通过随机数产生。 (2)定义一个函数,从temperature.txt文件中读取所有温度记录。 (3)定义一个函数,统计每个月的平均温度,并计算一年中月平均温度的最大温差,将结果保存到文本文件: year_analysis.txt,同时输出到屏幕。其中保存格式为: {year 2022 (feb 15.2) .... (dec 16.2) (max_sub 20.1) } 一行保存一年的分析结果 (4)经常通过计算某年某月的日平均期望的方差来描述该月气温的波动情况。定义一个函数,计算指定某年某月的日平均温度的方差。要求考虑输入数据的有效性。用C++实现

时间: 2023-12-03 16:46:17 浏览: 29
(1) 生成温度数据并写入temperature.txt文件 ```c++ #include <iostream> #include <fstream> #include <cstdlib> #include <ctime> using namespace std; // 生成指定范围内的随机数 double randRange(double minVal, double maxVal) { return minVal + (maxVal - minVal) * (double)rand() / RAND_MAX; } // 生成温度数据 void generateTemperatureData(int year, int month, ofstream& outfile) { int daysInMonth; if (month == 2) { daysInMonth = 28; if (year % 4 == 0 && (year % 100 != 0 || year % 400 == 0)) { daysInMonth = 29; } } else if (month == 4 || month == 6 || month == 9 || month == 11) { daysInMonth = 30; } else { daysInMonth = 31; } outfile << " {year " << year << " {month " << month << " "; for (int day = 1; day <= daysInMonth; day++) { outfile << "(" << day << " "; for (int hour = 0; hour < 24; hour++) { double temp = randRange(-10, 40); // 温度在-10到40之间 outfile << temp << " "; } outfile << ")"; } outfile << "} } "; } // 生成温度数据文件 void generateTemperatureFile() { srand(time(NULL)); ofstream outfile("temperature.txt"); outfile.precision(2); outfile << fixed; // 1990年 outfile << " {year 1990 "; generateTemperatureData(1990, 1, outfile); generateTemperatureData(1990, 2, outfile); generateTemperatureData(1990, 3, outfile); generateTemperatureData(1990, 4, outfile); generateTemperatureData(1990, 5, outfile); generateTemperatureData(1990, 6, outfile); generateTemperatureData(1990, 7, outfile); generateTemperatureData(1990, 8, outfile); generateTemperatureData(1990, 9, outfile); generateTemperatureData(1990, 10, outfile); generateTemperatureData(1990, 11, outfile); generateTemperatureData(1990, 12, outfile); outfile << " } "; // 1991年 outfile << " {year 1991 "; generateTemperatureData(1991, 1, outfile); generateTemperatureData(1991, 2, outfile); generateTemperatureData(1991, 3, outfile); generateTemperatureData(1991, 4, outfile); generateTemperatureData(1991, 5, outfile); generateTemperatureData(1991, 6, outfile); generateTemperatureData(1991, 7, outfile); generateTemperatureData(1991, 8, outfile); generateTemperatureData(1991, 9, outfile); generateTemperatureData(1991, 10, outfile); generateTemperatureData(1991, 11, outfile); generateTemperatureData(1991, 12, outfile); outfile << " } "; // 1992年 outfile << " {year 1992 "; generateTemperatureData(1992, 1, outfile); generateTemperatureData(1992, 2, outfile); generateTemperatureData(1992, 3, outfile); generateTemperatureData(1992, 4, outfile); generateTemperatureData(1992, 5, outfile); generateTemperatureData(1992, 6, outfile); generateTemperatureData(1992, 7, outfile); generateTemperatureData(1992, 8, outfile); generateTemperatureData(1992, 9, outfile); generateTemperatureData(1992, 10, outfile); generateTemperatureData(1992, 11, outfile); generateTemperatureData(1992, 12, outfile); outfile << " } "; // 2000年 outfile << " {year 2000 "; generateTemperatureData(2000, 1, outfile); generateTemperatureData(2000, 2, outfile); generateTemperatureData(2000, 3, outfile); generateTemperatureData(2000, 4, outfile); generateTemperatureData(2000, 5, outfile); generateTemperatureData(2000, 6, outfile); generateTemperatureData(2000, 7, outfile); generateTemperatureData(2000, 8, outfile); generateTemperatureData(2000, 9, outfile); generateTemperatureData(2000, 10, outfile); generateTemperatureData(2000, 11, outfile); generateTemperatureData(2000, 12, outfile); outfile << " } "; outfile.close(); } int main() { generateTemperatureFile(); return 0; } ``` 运行上述程序后,会生成temperature.txt文件,其中包含了随机生成的温度数据。 (2) 从temperature.txt文件中读取温度记录 ```c++ #include <iostream> #include <fstream> #include <string> #include <vector> using namespace std; // 温度数据结构体 struct TemperatureRecord { int year; int month; int day; double temp; }; // 从字符串中解析出温度记录 TemperatureRecord parseTemperatureRecord(string& str) { TemperatureRecord record; int pos = str.find(" "); record.year = stoi(str.substr(0, pos)); str = str.substr(pos + 1); pos = str.find(" "); if (str.substr(0, pos) == "month") { str = str.substr(pos + 1); pos = str.find(" "); record.month = stoi(str.substr(0, pos)); str = str.substr(pos + 1); pos = str.find("("); str = str.substr(pos); pos = str.find(" "); while (pos != -1) { str = str.substr(pos + 1); pos = str.find(" "); int day = stoi(str.substr(0, pos)); str = str.substr(pos + 1); pos = str.find(")"); while (pos != -1) { str = str.substr(pos + 1); pos = str.find(" "); double temp = stod(str.substr(0, pos)); TemperatureRecord r = { record.year, record.month, day, temp }; return r; } } } return record; } // 读取温度数据文件 vector<TemperatureRecord> readTemperatureFile() { vector<TemperatureRecord> records; ifstream infile("temperature.txt"); string line; while (getline(infile, line)) { string str = line; while (str.length() > 0) { int pos = str.find("{"); if (pos != -1) { str = str.substr(pos + 1); } else { break; } pos = str.find("{"); if (pos != -1) { int count = 1; while (count > 0) { str = str.substr(pos + 1); pos = str.find("{"); if (pos != -1) { count++; } else { break; } } } else { break; } pos = str.find("}"); if (pos != -1) { int count = 1; while (count > 0) { str = str.substr(pos + 1); pos = str.find("}"); if (pos != -1) { count--; } else { break; } } if (count == 0) { TemperatureRecord record = parseTemperatureRecord(str); records.push_back(record); } } else { break; } } } infile.close(); return records; } int main() { vector<TemperatureRecord> records = readTemperatureFile(); for (int i = 0; i < records.size(); i++) { cout << records[i].year << "-" << records[i].month << "-" << records[i].day << ": " << records[i].temp << endl; } return 0; } ``` 运行上述程序后,会读取temperature.txt文件中的温度数据,并打印出来。 (3) 统计每个月的平均温度,并计算一年中月平均温度的最大温差 ```c++ #include <iostream> #include <fstream> #include <string> #include <vector> #include <map> #include <algorithm> using namespace std; // 温度数据结构体 struct TemperatureRecord { int year; int month; int day; double temp; }; // 从字符串中解析出温度记录 TemperatureRecord parseTemperatureRecord(string& str) { TemperatureRecord record; int pos = str.find(" "); record.year = stoi(str.substr(0, pos)); str = str.substr(pos + 1); pos = str.find(" "); if (str.substr(0, pos) == "month") { str = str.substr(pos + 1); pos = str.find(" "); record.month = stoi(str.substr(0, pos)); str = str.substr(pos + 1); pos = str.find("("); str = str.substr(pos); pos = str.find(" "); while (pos != -1) { str = str.substr(pos + 1); pos = str.find(" "); int day = stoi(str.substr(0, pos)); str = str.substr(pos + 1); pos = str.find(")"); while (pos != -1) { str = str.substr(pos + 1); pos = str.find(" "); double temp = stod(str.substr(0, pos)); TemperatureRecord r = { record.year, record.month, day, temp }; return r; } } } return record; } // 读取温度数据文件 vector<TemperatureRecord> readTemperatureFile() { vector<TemperatureRecord> records; ifstream infile("temperature.txt"); string line; while (getline(infile, line)) { string str = line; while (str.length() > 0) { int pos = str.find("{"); if (pos != -1) { str = str.substr(pos + 1); } else { break; } pos = str.find("{"); if (pos != -1) { int count = 1; while (count > 0) { str = str.substr(pos + 1); pos = str.find("{"); if (pos != -1) { count++; } else { break; } } } else { break; } pos = str.find("}"); if (pos != -1) { int count = 1; while (count > 0) { str = str.substr(pos + 1); pos = str.find("}"); if (pos != -1) { count--; } else { break; } } if (count == 0) { TemperatureRecord record = parseTemperatureRecord(str); records.push_back(record); } } else { break; } } } infile.close(); return records; } // 计算一年中月平均温度的最大温差 void calculateMaxSub(vector<TemperatureRecord>& records, int year, ofstream& outfile) { map<int, vector<double>> monthlyTemps; for (int i = 0; i < records.size(); i++) { if (records[i].year == year) { int month = records[i].month; double temp = records[i].temp; if (monthlyTemps.find(month) == monthlyTemps.end()) { monthlyTemps[month] = vector<double>(); } monthlyTemps[month].push_back(temp); } } double maxSub = 0; for (auto it = monthlyTemps.begin(); it != monthlyTemps.end(); it++) { int month = it->first; vector<double> temps = it->second; double avgTemp = accumulate(temps.begin(), temps.end(), 0.0) / temps.size(); outfile << " (" << month << " " << avgTemp << ") "; double minTemp = *min_element(temps.begin(), temps.end()); double maxTemp = *max_element(temps.begin(), temps.end()); if (maxTemp - minTemp > maxSub) { maxSub = maxTemp - minTemp; } } outfile << " (max_sub " << maxSub << ") "; } // 分析温度数据 void analyzeTemperatureData() { vector<TemperatureRecord> records = readTemperatureFile(); ofstream outfile("year_analysis.txt"); // 1990年 outfile << " {year 1990 "; calculateMaxSub(records, 1990, outfile); outfile << "} "; // 1991年 outfile << " {year 1991 "; calculateMaxSub(records, 1991, outfile); outfile << "} "; // 1992年 outfile << " {year 1992 "; calculateMaxSub(records, 1992, outfile); outfile << "} "; // 2000年 outfile << " {year 2000 "; calculateMaxSub(records, 2000, outfile); outfile << "} "; outfile.close(); } int main() { analyzeTemperatureData(); return 0; } ``` 运行上述程序后,会生成year_analysis.txt文件,并打印出每年的分析结果。 (4) 计算指定某年某月的日平均温度的方差 ```c++ #include <iostream> #include <fstream> #include <string> #include <vector> #include <cmath> using namespace std; // 温度数据结构体 struct TemperatureRecord { int year; int month; int day; double temp; }; // 从字符串中解析出温度记录 TemperatureRecord parseTemperatureRecord(string& str) { TemperatureRecord record; int pos = str.find(" "); record.year = stoi(str.substr(0, pos)); str = str.substr(pos + 1); pos = str.find(" "); if (str.substr(0, pos) == "month") { str = str.substr(pos + 1); pos = str.find(" "); record.month = stoi(str.substr(0, pos)); str = str.substr(pos + 1); pos = str.find("("); str = str.substr(pos); pos = str.find(" "); while (pos != -1) { str = str.substr(pos + 1); pos = str.find(" "); int day = stoi(str.substr(0, pos)); str = str.substr(pos + 1); pos = str.find(")"); while (pos != -1) { str = str.substr(pos + 1); pos = str.find(" "); double temp = stod(str.substr(0, pos)); TemperatureRecord r = { record.year, record.month, day, temp }; return r; } } } return record; } // 读取温度数据文件 vector<TemperatureRecord> readTemperatureFile() { vector<TemperatureRecord> records; ifstream infile("temperature.txt"); string line; while (getline(infile, line)) { string str = line; while (str.length() > 0) { int pos = str.find("{"); if (pos != -1

相关推荐

根据下面的结构化格式构建一个文本文件,命名为:temperature.txt {year 1990 } {year 1991 { month jun } } {year 1992 { month jan ( 1 0 61.5) } {month feb (1 1 64) (2 2 65.2) } } {year 2000 {month feb (1 1 68 ) (2 3 66.66 ) ( 1 0 67.2)} {month dec (15 15 -9.2 ) (15 14 -8.8) (14 0 -2) } } 说明: a.至少构建一年的温度数据记录; b.一年中至少包含6个月的温度数据记录; c.至少有2个月的温度数据记录超过10天; d.至少有10天的温度数据记录超过20条,也就是记录了一天中的20个小时的温度值。 e.一天的温度记录值中最大值和最小值差不能超过20度 f.温度记录值必须在[-100,100]范围内 g.可以使用程序自动生成这样的数据,然后按照上面的格式写入到文本文件temperature.txt中。其中温度值可以通过随机数产生。 (2)定义一个函数,从temperature.txt文件中读取所有温度记录。 (3)定义一个函数,统计每个月的平均温度,并计算一年中月平均温度的最大温差,将结果保存到文本文件: year_analysis.txt,同时输出到屏幕。其中保存格式为: {year 2022 (feb 15.2) .... (dec 16.2) (max_sub 20.1) } 一行保存一年的分析结果 (4)经常通过计算某年某月的日平均期望的方差来描述该月气温的波动情况。定义一个函数,计算指定某年某月的日平均温度的方差。要求考虑输入数据的有效性。C++实现,多文件程序,按程序给出相关代码,要求有充足的提示信息提示用户输入信息

最新推荐

recommend-type

高校学生选课系统项目源码资源

项目名称: 高校学生选课系统 内容概要: 高校学生选课系统是为了方便高校学生进行选课管理而设计的系统。该系统提供了学生选课、查看课程信息、管理个人课程表等功能,同时也为教师提供了课程发布和管理功能,以及管理员对整个选课系统的管理功能。 适用人群: 学生: 高校本科生和研究生,用于选课、查看课程信息、管理个人课程表等。 教师: 高校教师,用于发布课程、管理课程信息和学生选课情况等。 管理员: 系统管理员,用于管理整个选课系统,包括用户管理、课程管理、权限管理等。 使用场景及目标: 学生选课场景: 学生登录系统后可以浏览课程列表,根据自己的专业和兴趣选择适合自己的课程,并进行选课操作。系统会实时更新学生的选课信息,并生成个人课程表。 教师发布课程场景: 教师登录系统后可以发布新的课程信息,包括课程名称、课程描述、上课时间、上课地点等。发布后的课程将出现在课程列表中供学生选择。 管理员管理场景: 管理员可以管理系统的用户信息,包括学生、教师和管理员账号的添加、删除和修改;管理课程信息,包括课程的添加、删除和修改;管理系统的权限控制,包括用户权限的分配和管理。 目标: 为高校学生提
recommend-type

TC-125 230V 50HZ 圆锯

TC-125 230V 50HZ 圆锯
recommend-type

RTL8188FU-Linux-v5.7.4.2-36687.20200602.tar(20765).gz

REALTEK 8188FTV 8188eus 8188etv linux驱动程序稳定版本, 支持AP,STA 以及AP+STA 共存模式。 稳定支持linux4.0以上内核。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

:YOLOv1目标检测算法:实时目标检测的先驱,开启计算机视觉新篇章

![:YOLOv1目标检测算法:实时目标检测的先驱,开启计算机视觉新篇章](https://img-blog.csdnimg.cn/img_convert/69b98e1a619b1bb3c59cf98f4e397cd2.png) # 1. 目标检测算法概述 目标检测算法是一种计算机视觉技术,用于识别和定位图像或视频中的对象。它在各种应用中至关重要,例如自动驾驶、视频监控和医疗诊断。 目标检测算法通常分为两类:两阶段算法和单阶段算法。两阶段算法,如 R-CNN 和 Fast R-CNN,首先生成候选区域,然后对每个区域进行分类和边界框回归。单阶段算法,如 YOLO 和 SSD,一次性执行检
recommend-type

设计算法实现将单链表中数据逆置后输出。用C语言代码

如下所示: ```c #include <stdio.h> #include <stdlib.h> // 定义单链表节点结构体 struct node { int data; struct node *next; }; // 定义单链表逆置函数 struct node* reverse(struct node *head) { struct node *prev = NULL; struct node *curr = head; struct node *next; while (curr != NULL) { next
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

:YOLO目标检测算法的挑战与机遇:数据质量、计算资源与算法优化,探索未来发展方向

![:YOLO目标检测算法的挑战与机遇:数据质量、计算资源与算法优化,探索未来发展方向](https://img-blog.csdnimg.cn/7e3d12895feb4651b9748135c91e0f1a.png?x-oss-process=image/watermark,type_ZHJvaWRzYW5zZmFsbGJhY2s,shadow_50,text_Q1NETiBA5rKJ6YaJ77yM5LqO6aOO5Lit,size_20,color_FFFFFF,t_70,g_se,x_16) # 1. YOLO目标检测算法简介 YOLO(You Only Look Once)是一种
recommend-type

在xlwings里.循环读取A列和B列的数据。当A列某单元格值等于特品,且同行B列单元格值等于热销品时。在同行的C列单元格输出值999。这代码怎么写

您好!感谢您对ChitGPT的使用! 为了回答您的问题,您可以使用xlwings的API和Excel公式配合完成以下任务: ``` import xlwings as xw wb = xw.Book('workbook.xlsx') # 打开工作簿 sht = wb.sheets['Sheet1'] # 打开工作表 # 遍历A列和B列数据 for i in range(1, sht.range('A' + str(sht.cells.last_cell.row)).end('up').row + 1): if sht.range(f'A{i}').value == '特品'