SVD-FRFT雷达抑制海杂波matlab程序代码

时间: 2023-07-19 11:15:14 浏览: 69
以下是一份使用SVD-FRFT抑制海杂波的Matlab程序代码示例: ```matlab clc; clear; close all; %% 加载雷达数据 load('radar_data.mat'); %% SVD-FRFT去海杂波 [m, n] = size(radar_data); NFFT = 2^nextpow2(m); % NFFT应为2的幂 fs = 1 / (t(2)-t(1)); % 计算采样频率 f = fs/2 * linspace(-1,1,NFFT); % 频率坐标 figure(1) plot(f, 20*log10(abs(fftshift(fft(radar_data,NFFT))))); % SVD-FRFT去海杂波 [U, S, V] = svd(radar_data); alpha = 1.5; % FRFT参数 for k = 1:n V(:,k) = frft(V(:,k), alpha); % 对V的每一列进行FRFT end S_new = zeros(m,n); S_new(1:n,1:n) = S(1:n,1:n); radar_data_new = U * S_new * V'; % 去除海杂波后的雷达数据 figure(2) plot(f, 20*log10(abs(fftshift(fft(radar_data_new,NFFT))))); %% 显示原始雷达数据和去海杂波后的雷达数据 figure(3) subplot(2, 1, 1) imagesc(t, range/1000, 20*log10(abs(radar_data))) title('原始雷达数据') xlabel('时间 (s)') ylabel('距离 (km)') colormap('jet') colorbar subplot(2, 1, 2) imagesc(t, range/1000, 20*log10(abs(radar_data_new))) title('去海杂波后的雷达数据') xlabel('时间 (s)') ylabel('距离 (km)') colormap('jet') colorbar ``` 其中,`radar_data.mat`是存储了雷达数据的Matlab数据文件。在程序中,首先加载雷达数据,然后使用SVD-FRFT算法去除海杂波,并绘制去除前后的雷达数据频谱图。最后,使用`imagesc`函数显示原始雷达数据和去海杂波后的雷达数据。注意,本程序仅供参考,具体的参数设置需要根据实际情况进行调整。

相关推荐

最新推荐

基于SVD-TLS的AR谱估计

基于SVD-TLS的AR谱估计 这是在之前下载的一个MATLAB程序上稍作了一点修改

现代谱估计SVD-TLS,ARMA,最小二乘方法

用一般的最小二乘方法和SVD-TLS方法估计观测数据的ARMA模型的AR参数,并估计正弦波的频率。

简历-求职简历-word-文件-简历模版免费分享-应届生-高颜值简历模版-个人简历模版-简约大气-大学生在校生-求职-实习

maven安装与配置简历-求职简历-word-文件-简历模版免费分享-应届生-高颜值简历模版-个人简历模版-简约大气-大学生在校生-求职-实习 简历是展示个人经历、技能和能力的重要文档,以下是一个常见的简历格式和内容模板,供您参考: 简历格式: 头部信息:包括姓名、联系方式(电话号码、电子邮件等)、地址等个人基本信息。 求职目标(可选):简短描述您的求职意向和目标。 教育背景:列出您的教育经历,包括学校名称、所学专业、就读时间等。 工作经验:按时间顺序列出您的工作经历,包括公司名称、职位、工作时间、工作职责和成就等。 技能和能力:列出您的专业技能、语言能力、计算机技能等与职位相关的能力。 实习经验/项目经验(可选):如果您有相关实习或项目经验,可以列出相关信息。 获奖和荣誉(可选):列出您在学术、工作或其他领域获得的奖项和荣誉。 自我评价(可选):简要描述您的个人特点、能力和职业目标。 兴趣爱好(可选):列出您的兴趣爱好,展示您的多样性和个人素质。 参考人(可选):如果您有可提供推荐的人员,可以在简历中提供其联系信息。 简历内容模板: 姓名: 联系方式: 地址: 求职目标:

Oracle数据库实用教程第三章 PL/SQL程序设计.pptx

Oracle数据库实用教程第三章 PL/SQL程序设计.pptx

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire

粒子群多目标算法matlab代码【MATLAB代码实现】定义优化问题参数

# 1. 粒子群多目标算法简介 ## 1.1 什么是粒子群算法? 粒子群算法是一种基于群体智能的优化算法,灵感来源于鸟群或鱼群等生物群体的行为。每个“粒子”代表问题空间中的一个候选解,而整个粒子群代表了候选解的一个群体。粒子在解空间中搜索最优解,通过个体的经验和群体的协作来不断调整自身位置和速度,从而逐步靠近最优解。 ## 1.2 粒子群算法在多目标优化中的应用 粒子群算法最初是针对单目标优化问题提出的,但后来被扩展应用到了多目标优化领域。与单目标优化不同,多目标优化需要考虑多个冲突的目标函数,因此粒子群算法的应用在多目标优化中具有一定的挑战性。 ## 1.3 粒子群多目标算法原理解

具体操作:你可以将 PyTorch 安装路径添加到环境变量中,或者使用 PyCharm 等集成开发环境来设置 Python 解释器。

好的,以下是具体的操作步骤: 添加 PyTorch 安装路径到环境变量中: 1. 打开计算机的属性,点击高级系统设置; 2. 在弹出的窗口中,点击环境变量; 3. 在系统变量中,找到 PATH 变量,点击编辑; 4. 在编辑系统变量窗口中,点击新建; 5. 输入 PyTorch 安装路径,例如 `C:\Program Files\PyTorch`,点击确定; 6. 点击确定,保存设置。 设置 PyCharm 的 Python 解释器: 1. 打开 PyCharm,点击 File -> Settings 进入设置界面; 2. 在设置界面中,选择 Project -> Project I

TS16949发展史及五大手册的意义.pptx

TS16949发展史及五大手册的意义.pptx

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依

粒子群多目标算法matlab代码【算法实现步骤】计算适应度函数

# 1. 粒子群多目标算法简介 ## 1.1 粒子群多目标算法概述 在多目标优化问题中,粒子群多目标算法是一种常用的元启发式优化算法。它借鉴了鸟群觅食的行为,通过不断调整粒子的位置和速度来搜索最优解空间。相比于传统的单目标优化算法,粒子群多目标算法能够有效解决多目标优化问题。 ## 1.2 算法原理与特点 粒子群多目标算法的核心原理是通过模拟群体中粒子的运动,不断更新粒子的位置和速度,以达到最优解。其特点包括易于实现、收敛速度快、对参数不敏感等。 ## 1.3 相关研究现状分析 目前,粒子群多目标算法在多目标优化领域得到了广泛应用,并在不同领域取得了一定的成果。研究者们也在不断探索