请在activation.py文件中定义一个激活函数,y=0.2582*e^(-((x/15)^2))

时间: 2024-04-29 18:21:51 浏览: 10
可以将以下代码添加到activation.py文件中以定义所需的激活函数: ```python import numpy as np def custom_activation(x): return 0.2582 * np.exp(-((x/15)**2)) ``` 这个函数使用了numpy的指数函数和元素级别的操作,可以很快地对输入进行计算。现在你可以在模型定义中使用这个激活函数了。
相关问题

五层全连接神经网络拟合函数y=x^2+2x-3的python代码

### 回答1: import numpy as np x = np.arange(-3,3,0.1) y = x**2*2*x - 3 import torch from torch.autograd import Variable w1 = Variable(torch.Tensor([1]), requires_grad=True) w2 = Variable(torch.Tensor([1]), requires_grad=True) w3 = Variable(torch.Tensor([1]), requires_grad=True) w4 = Variable(torch.Tensor([1]), requires_grad=True) w5 = Variable(torch.Tensor([1]), requires_grad=True) def forward(x): y_pred = w1*x**4 + w2*x**3 + w3*x**2 + w4*x + w5 return y_pred # Loss function def loss(y, y_pred): return torch.mean((y_pred - y)**2) # Optimizer optimizer = torch.optim.SGD([w1, w2, w3, w4, w5], lr=0.01) # Training for epoch in range(100): # Forward pass y_pred = forward(x) # Compute loss l = loss(y, y_pred) # Backward pass l.backward() # Update the parameters optimizer.step() # Zero the gradients optimizer.zero_grad() # Final prediction y_pred = forward(x) print("五层全连接神经网络拟合函数y=x^2 2x-3的Python代码如下:") print("import numpy as np") print("x = np.arange(-3,3,0.1)") print("y = x**2*2*x - 3") print("import torch") print("from torch.autograd import Variable") print("w1 = Variable(torch.Tensor([1]), requires_grad=True)") print("w2 = Variable(torch.Tensor([1]), requires_grad=True)") print("w3 = Variable(torch.Tensor([1]), requires_grad=True)") print("w4 = Variable(torch.Tensor([1]), requires_grad=True)") print("w5 = Variable(torch.Tensor([1]), requires_grad=True)") print("def forward(x):") print(" y_pred = w1*x**4 + w2*x**3 + w3*x**2 + w4*x + w5") print(" return y_pred") print("# Loss function") print("def loss(y, y_pred):") print(" return torch.mean((y_pred - y)**2)") print("# Optimizer") print("optimizer = torch.optim.SGD([w1, w2, w3, w4, w5], lr=0.01)") print("# Training") print("for epoch in range(100):") print(" # Forward pass") print(" y_pred = forward(x)") print(" # Compute loss") print(" l = loss(y, y_pred)") print(" # Backward pass") print(" l.backward()") print(" # Update the parameters") print(" optimizer.step()") print(" # Zero the gradients") print(" optimizer.zero_grad()") print("# Final prediction") print("y_pred = forward(x)") ### 回答2: import numpy as np import matplotlib.pyplot as plt # 定义激活函数 def activation(x): return 1 / (1 + np.exp(-x)) # 定义导数函数 def derivative_activation(x): return activation(x) * (1 - activation(x)) # 定义神经网络类 class NeuralNetwork: def __init__(self, layers): self.layers = layers self.weights = [np.random.random((layers[i], layers[i+1])) for i in range(len(layers)-1)] self.biases = [np.random.random(layers[i+1]) for i in range(len(layers)-1)] def forward_propagation(self, x): self.a = [x] self.z = [] for i in range(len(self.layers)-1): self.z.append(np.dot(self.a[-1], self.weights[i]) + self.biases[i]) self.a.append(activation(self.z[-1])) return self.a[-1] def back_propagation(self, x, y, learning_rate): delta = 2 * (self.a[-1] - y) * derivative_activation(self.z[-1]) nabla_w = [np.zeros((self.layers[i], self.layers[i+1])) for i in range(len(self.layers)-1)] nabla_b = [np.zeros(self.layers[i+1]) for i in range(len(self.layers)-1)] nabla_w[-1] = np.dot(self.a[-2].T, delta) nabla_b[-1] = delta for i in range(len(self.layers)-3, -1, -1): delta = np.dot(delta, self.weights[i+1].T) * derivative_activation(self.z[i]) nabla_w[i] = np.dot(self.a[i].T, delta) nabla_b[i] = delta for i in range(len(self.layers)-2, -1, -1): self.weights[i] -= learning_rate * nabla_w[i] self.biases[i] -= learning_rate * nabla_b[i] def train(self, x_train, y_train, epochs, learning_rate): for epoch in range(epochs): for x, y in zip(x_train, y_train): output = self.forward_propagation(x) self.back_propagation(x, y, learning_rate) def predict(self, x): return self.forward_propagation(x) # 准备训练数据 x_train = np.linspace(-10, 10, 100) y_train = np.square(x_train) + 2 * x_train - 3 # 创建神经网络并训练 nn = NeuralNetwork([1, 5, 5, 5, 5, 1]) nn.train(x_train, y_train, epochs=10000, learning_rate=0.001) # 准备测试数据 x_test = np.linspace(-10, 10, 100) y_test = np.square(x_test) + 2 * x_test - 3 # 使用神经网络进行预测 y_pred = np.zeros_like(x_test) for i, x in enumerate(x_test): y_pred[i] = nn.predict(x) # 绘制拟合曲线 plt.plot(x_train, y_train, 'bo', label='Training data') plt.plot(x_test, y_test, 'g-', label='True data') plt.plot(x_test, y_pred, 'r-', label='Predicted data') plt.legend() plt.show() ### 回答3: import torch import torch.nn as nn import numpy as np import matplotlib.pyplot as plt # 定义数据 x = np.linspace(-10, 10, 100) y = x**2 + 2*x - 3 # 将数据转化为张量 x_tensor = torch.from_numpy(x).float() y_tensor = torch.from_numpy(y).float() # 定义神经网络模型 class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.fc1 = nn.Linear(1, 10) self.fc2 = nn.Linear(10, 20) self.fc3 = nn.Linear(20, 10) self.fc4 = nn.Linear(10, 1) def forward(self, x): x = torch.relu(self.fc1(x)) x = torch.relu(self.fc2(x)) x = torch.relu(self.fc3(x)) x = self.fc4(x) return x # 初始化神经网络 model = Net() # 定义损失函数和优化器 criterion = nn.MSELoss() optimizer = torch.optim.SGD(model.parameters(), lr=0.01) # 训练神经网络 for epoch in range(1000): # forward output = model(x_tensor.unsqueeze(1)) loss = criterion(output.squeeze(), y_tensor) # backward and optimize optimizer.zero_grad() loss.backward() optimizer.step() # 绘制拟合曲线 x_test = np.linspace(-10, 10, 100) x_test_tensor = torch.from_numpy(x_test).float() y_pred = model(x_test_tensor.unsqueeze(1)).detach().numpy().flatten() plt.plot(x, y, label='ground truth') plt.plot(x_test, y_pred, label='fitted curve') plt.legend() plt.show()

定义了那还需要my_activation.py文件吗

如果你使用的是Keras内置的激活函数,那么不需要自己定义my_activation.py文件。但是,如果你要使用自定义的激活函数,就需要在my_activation.py文件中定义该激活函数的代码。然后在模型中调用该激活函数时,就需要在代码中导入my_activation.py文件并调用里面的激活函数。

相关推荐

最新推荐

recommend-type

使用keras实现非线性回归(两种加激活函数的方式)

我就废话不多说了,大家还是直接看代码吧~ import keras ...#Dense 全连接层,Activation激活函数 from keras.layers import Dense,Activation from keras.optimizers import SGD x_data=np.linspace(-0.5,0.5
recommend-type

jdk10+ java.lang.NoClassDefFoundError: javax/xml/ws/Service 错误

<groupId>javax.activation</groupId> <artifactId>javax.activation-api</artifactId> <version>1.2.0</version> </dependency> <groupId>javax.xml.bind</groupId> <artifactId>jaxb-api</artifactId> ...
recommend-type

MIL-HDBK-217F-Notice2.pdf

the activation energies representing the temperature sensitivity of the dice(IT)have been changed for MOS devices and for memories. The Ca factor remains unchanged from the previous Handbook version, ...
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

用Spring boot和vue写一个登录注册界面

好的,这是一个比较常见的技术问题,我可以为您提供一些参考资料和思路。首先,您可以使用Spring Boot作为后端框架来处理用户认证和注册的逻辑,比如使用Spring Security实现用户登录认证。同时,您还需要设计相应的数据模型和数据库表结构来存储用户信息。在前端方面,您可以使用Vue.js作为框架来构建登录注册页面,使用Axios来发起API请求并和后端进行交互。当然,在实现过程中,还需要考虑一些具体细节,比如数据校验、安全性和用户体验等方面。希望这些信息能够帮助到您。
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB柱状图在数据分析中的作用:从可视化到洞察

![MATLAB柱状图在数据分析中的作用:从可视化到洞察](https://img-blog.csdnimg.cn/img_convert/1a36558cefc0339f7836cca7680c0aef.png) # 1. MATLAB柱状图概述** 柱状图是一种广泛用于数据可视化的图表类型,它使用垂直条形来表示数据中不同类别或组别的值。在MATLAB中,柱状图通过`bar`函数创建,该函数接受数据向量或矩阵作为输入,并生成相应的高度条形。 柱状图的优点在于其简单性和易于理解性。它们可以快速有效地传达数据分布和组别之间的比较。此外,MATLAB提供了广泛的定制选项,允许用户调整条形颜色、