卷积神经网络matlab超简单
时间: 2024-10-04 15:04:47 浏览: 29
卷积神经网络(Convolutional Neural Network,CNN)是一种深度学习模型,特别适用于图像处理和计算机视觉任务。在MATLAB中,你可以使用Deep Learning Toolbox来构建简单的CNN。以下是创建一个基本CNN的步骤:
1. **安装和加载库**:
首先确保已安装了Deep Learning Toolbox,然后通过`net = 'trainNetwork';`初始化一个网络结构。
2. **数据准备**:
准备训练数据集,通常包括图像和对应的标签。可以使用` imageDatastore`函数组织数据。
3. **设计网络架构**:
通过`layerGraph`函数创建一个图来定义网络结构,一般包含卷积层(如`convolution2dLayer`)、池化层(如`maxPooling2dLayer`)以及全连接层(如`fullyConnectedLayer`)。
```matlab
layers = [
imageInputLayer([height width channels])
convolution2dLayer(filterSize, numFilters, 'Padding', 'same')
reluLayer
maxPooling2dLayer(poolSize)
fullyConnectedLayer(numClasses)
softmaxLayer
classificationLayer];
```
4. **编译网络**:
设置损失函数、优化器和性能指标,例如交叉熵损失函数和SGD优化器。
5. **训练网络**:
`trainNetwork`函数用于拟合模型,传入数据集、网络结构、学习率等参数。
```matlab
options = trainingOptions('sgdm', 'MaxEpochs', epochs, 'MiniBatchSize', miniBatchSize);
net = trainNetwork(trainData, layers, options);
```
6. **评估和预测**:
可以使用`classify`函数对测试数据进行分类,并查看性能。
阅读全文
相关推荐


















