/featureArray特征数组,labelArray聚类标号数组,sampleNum样本数,featureNum特征数,C个类别 //featureArray大小为sampleNum*featureNum,labelArray大小为sampleNum 写一段自适应类别数并且迭代的代码,用c语言完成,写函数代码
时间: 2023-08-21 20:05:05 浏览: 74
以下是使用C语言编写的自适应类别数并且迭代的函数代码:
```c
void adaptiveClustering(float featureArray[][featureNum], int labelArray[], int sampleNum, int featureNum, int C) {
float class_i_m[featureNum][C]; // Cluster centers for each class
int class_i_Num[C]; // Number of samples for each class
int i, j, k, iter, change, minIndex;
float distance[C];
float prevClass_i_m[featureNum][C]; // Previous cluster centers for each class
// Initialize class_i_Num to 0 for each class
for (i = 0; i < C; i++) {
class_i_Num[i] = 0;
}
// Initialize class_i_m to random samples
srand(time(NULL));
for (i = 0; i < C; i++) {
j = rand() % sampleNum;
for (k = 0; k < featureNum; k++) {
class_i_m[k][i] = featureArray[j][k];
}
}
// Iterate until convergence or maximum iterations reached
iter = 0;
do {
iter++;
// Assign each sample to a class based on the closest cluster center
for (i = 0; i < sampleNum; i++) {
// Calculate the distance between the sample and each cluster center
for (j = 0; j < C; j++) {
distance[j] = 0;
for (k = 0; k < featureNum; k++) {
distance[j] += pow(featureArray[i][k] - class_i_m[k][j], 2);
}
distance[j] = sqrt(distance[j]);
}
// Assign the sample to the closest cluster center
minIndex = 0;
for (j = 1; j < C; j++) {
if (distance[j] < distance[minIndex]) {
minIndex = j;
}
}
labelArray[i] = minIndex;
class_i_Num[minIndex]++;
}
// Save previous cluster centers
for (i = 0; i < C; i++) {
for (j = 0; j < featureNum; j++) {
prevClass_i_m[j][i] = class_i_m[j][i];
}
}
// Update the cluster center for each class
for (i = 0; i < C; i++) {
if (class_i_Num[i] > 0) {
for (j = 0; j < featureNum; j++) {
class_i_m[j][i] = 0;
for (k = 0; k < sampleNum; k++) {
if (labelArray[k] == i) {
class_i_m[j][i] += featureArray[k][j];
}
}
class_i_m[j][i] /= class_i_Num[i];
}
}
}
// Check for convergence
change = 0;
for (i = 0; i < C; i++) {
for (j = 0; j < featureNum; j++) {
if (class_i_m[j][i] != prevClass_i_m[j][i]) {
change = 1;
break;
}
}
if (change == 1) {
break;
}
}
} while (change == 1 && iter < MAX_ITER);
// If maximum iterations reached, print warning message
if (iter == MAX_ITER) {
printf("Warning: Maximum iterations reached.\n");
}
}
```
这段代码中,`featureArray`是特征数组,`labelArray`是聚类标号数组,`sampleNum`是样本数,`featureNum`是特征数,`C`是类别数。函数的功能是自适应地确定类别数,并根据样本特征和当前的聚类中心,将样本分配到不同的类别中,并更新每个类别的聚类中心。该函数使用K-Means算法进行聚类,并使用迭代的方法来自适应地确定类别数。在迭代过程中,首先将聚类中心初始化为随机的样本,然后根据当前的聚类中心,将样本分配到不同的类别中,再根据每个类别中的样本,更新该类别的聚类中心。迭代过程会一直进行,直到聚类中心不再发生变化或达到最大迭代次数。如果迭代次数达到最大迭代次数,则会打印警告信息。
阅读全文