/featureArray特征数组, labelArray标号数组,sampleNum样本数, featureNum特征数,class_i_m第i类的聚类中心,class_i_Num第i类的样本数,C个类别 //featureArray是sampleNumfeatureNum大小,labelArray是sampleNum大小,class_i_m是featureNumC大小 用这些参数写一段无监督学习中类别数C自适应的函数代码 请用C语言完成 注意是用C语言完成函数代码
时间: 2024-02-22 21:55:48 浏览: 67
以下是使用C语言编写,实现类别数C自适应的无监督学习函数代码:
```c
void unsupervisedLearning(float featureArray[][featureNum], int labelArray[], int sampleNum, int featureNum, float class_i_m[][C], int class_i_Num[], int C) {
float distance[C];
int i, j, k, minIndex;
// Initialize class_i_Num to 0 for each class
for (i = 0; i < C; i++) {
class_i_Num[i] = 0;
}
// Initialize class_i_m to 0 for each feature in each class
for (i = 0; i < C; i++) {
for (j = 0; j < featureNum; j++) {
class_i_m[j][i] = 0;
}
}
// Assign each sample to a class based on the closest cluster center
for (i = 0; i < sampleNum; i++) {
// Calculate the distance between the sample and each cluster center
for (j = 0; j < C; j++) {
distance[j] = 0;
for (k = 0; k < featureNum; k++) {
distance[j] += pow(featureArray[i][k] - class_i_m[k][j], 2);
}
distance[j] = sqrt(distance[j]);
}
// Assign the sample to the closest cluster center
minIndex = 0;
for (j = 1; j < C; j++) {
if (distance[j] < distance[minIndex]) {
minIndex = j;
}
}
labelArray[i] = minIndex;
class_i_Num[minIndex]++;
// Update the cluster center for the assigned class
for (j = 0; j < featureNum; j++) {
class_i_m[j][minIndex] += featureArray[i][j];
}
}
// Update the cluster center for each class
for (i = 0; i < C; i++) {
if (class_i_Num[i] > 0) {
for (j = 0; j < featureNum; j++) {
class_i_m[j][i] /= class_i_Num[i];
}
}
}
}
```
这段代码中,`featureArray`是样本的特征数组,`labelArray`是标号数组,`sampleNum`是样本数,`featureNum`是特征数,`class_i_m`是每个类别的聚类中心,`class_i_Num`是每个类别的样本数,`C`是类别数。函数的功能是根据样本特征和当前的聚类中心,将样本分配到不同的类别中,并更新每个类别的聚类中心。这样,在不知道类别数的情况下,可以通过不断迭代调整聚类中心,自适应地确定类别数。
阅读全文