卡尔曼滤波java实现代码
时间: 2023-06-06 13:03:03 浏览: 503
卡尔曼滤波是一种用于估计系统状态的数学算法,适用于包含噪声的测量数据。它主要用于飞行控制、自动驾驶、车辆导航等领域。在Java中,实现卡尔曼滤波算法可以使用如下代码:
首先,定义一个KalmanFilter类,其中包含以下方法:
constructors: 构造函数,定义Kalman滤波器的状态和维度,初始化状态向量和协方差矩阵。
prediction: 预测状态向量和协方差矩阵。
measurementUpdate: 内部测量更新。
update: 外部更新。
getEstimation: 返回估计的状态向量和协方差矩阵。
下面是一个简单的KalmanFilter类的实现代码:
```java
public class KalmanFilter {
private double[][] A;
private double[][] H;
private double[][] Q;
private double[][] R;
private double[][] X;
private double[][] P;
public KalmanFilter(int n, int m){
A = new double[n][n];
H= new double[m][n];
Q = new double[n][n];
R = new double[m][m];
X = new double[n][1];
P = new double[n][n];
}
public void prediction(double[][] F, double[][] B, double[][] u, double[][] Q){
A = matrixMul(F, A);
X= matrixAdd(matrixMul(F, X), matrixMul(B, u));
P = matrixAdd(matrixMul(matrixMul(F, P), transpose(F)), Q);
}
public void measurementUpdate(double[][] z, double[][] H, double[][] R){
double[][] y = matrixSub(z, matrixMul(H, X));
double[][] S = matrixAdd(R, matrixMul(matrixMul(H, P), transpose(H)));
double[][] K = matrixMul(matrixMul(P, transpose(H)), invert(S));
X = matrixAdd(X, matrixMul(K, y));
P = matrixMul(matrixSub(IdentityMatrix(H[0].length), matrixMul(K, H)), P);
}
public void update(double[][] z, double[][] F, double[][] B, double[][] u, double[][] H, double[][] Q, double[][] R){
prediction(F,B,u,Q);
measurementUpdate(z,H,R);
}
public double[][] getEstimation(){
return X;
}
private double[][] matrixAdd(double[][] A, double[][] B){
int n = A.length;
int m = A[0].length;
double[][] result = new double[n][m];
for(int i = 0; i < n; i++){
for(int j = 0; j < m; j++){
result[i][j] = A[i][j] + B[i][j];
}
}
return result;
}
private double[][] matrixSub(double[][] A, double[][] B){
int n = A.length;
int m = A[0].length;
double[][] result = new double[n][m];
for(int i = 0; i < n; i++){
for(int j = 0; j < m; j++){
result[i][j] = A[i][j] - B[i][j];
}
}
return result;
}
private double[][] matrixMul(double[][] A, double[][] B){
int n = A.length;
int m = A[0].length;
int p = B[0].length;
double[][] result = new double[n][p];
for(int i = 0; i < n; i++){
for(int j = 0; j < p; j++){
for(int k = 0; k < m; k++){
result[i][j] += A[i][k] * B[k][j];
}
}
}
return result;
}
private double[][] transpose(double[][] A){
int n = A.length;
int m = A[0].length;
double[][] result = new double[m][n];
for(int i = 0; i < n; i++){
for(int j = 0; j < m; j++){
result[j][i] = A[i][j];
}
}
return result;
}
private double[][] invert(double[][] A){
int n = A.length;
double[][] result = new double[n][n];
double[][] temp = new double[n][2*n];
for(int i = 0; i < n; i++){
for(int j = 0; j < n; j++){
temp[i][j] = A[i][j];
temp[i][j+n] = (i==j ? 1 : 0);
}
}
for(int i = 0; i < n; i++){
if(temp[i][i] == 0){
for(int j = i+1; j<n; j++){
if(temp[j][i] != 0){
for(int k = 0; k < 2*n; k++){
double t = temp[i][k];
temp[i][k] = temp[j][k];
temp[j][k] = t;
}
break;
}
}
}
double t = temp[i][i];
for(int k = 0; k < 2*n; k++){
temp[i][k] /= t;
}
for(int j = 0; j < n; j++){
if(i!=j){
t = temp[j][i];
for(int k = 0; k < 2*n; k++){
temp[j][k] -= temp[i][k]*t;
}
}
}
}
for(int i = 0; i < n; i++){
for(int j = n; j < 2*n; j++){
result[i][j-n] = temp[i][j];
}
}
return result;
}
private double[][] IdentityMatrix(int n){
double[][] result = new double[n][n];
for(int i = 0; i < n; i++){
result[i][i] = 1;
}
return result;
}
}
```
该代码实现了Kalman滤波器的预测,内部测量更新和外部更新功能,并提供了获取估计状态向量和协方差矩阵的方法。其中,matrixAdd,matrixSub,matrixMul,transpose,invert 和 IdentityMatrix方法用于矩阵操作。在使用Kalman滤波器时,需要定义系统的状态向量和测量向量,并提供状态传递矩阵,输入矩阵,测量传递矩阵,过程噪声协方差矩阵和测量噪声协方差矩阵。
阅读全文