def MEAN_Spot(opt): inputs1 = layers.Input(shape=(42, 42, 1)) inputs2 = layers.Input(shape=(42, 42, 1)) inputs3 = layers.Input(shape=(42, 42, 1)) inputs = layers.Concatenate()([inputs1, inputs2, inputs3]) conv1 = layers.Conv2D(3, (7,7), padding='same', activation='relu', kernel_regularizer=l2(0.001))(inputs) ba1 = BasicBlock(3, 16)(conv1) ba2 = BasicBlock(16, 32, stride=2)(ba1) att = BasicBlock1(32, 64, stride=2)(ba2) # interpretation 1 merged_conv = layers.Conv2D(8, (5,5), padding='same', activation='relu', kernel_regularizer=l2(0.1))(att) merged_pool = layers.MaxPooling2D(pool_size=(2, 2), padding='same', strides=(2,2))(merged_conv) flat = layers.Flatten()(merged_pool) flat_do = layers.Dropout(0.2)(flat) # outputs outputs = layers.Dense(1, activation='linear', name='spot')(flat_do) #Takes input u, v, os model = keras.models.Model(inputs=[inputs1, inputs2, inputs3], outputs=[outputs]) model.compile( loss={'spot':'mse'}, optimizer=opt, metrics={'spot':tf.keras.metrics.MeanAbsoluteError()}, ) return model
时间: 2023-09-07 07:12:52 浏览: 85
这段代码定义了一个名为MEAN_Spot的函数,该函数返回一个Keras模型。
该模型以三个42x42x1的输入作为输入,然后使用Concatenate()函数将它们拼接起来,形成一个新的输入。接着使用Conv2D()函数进行卷积操作,生成一个具有3个通道的特征图。然后通过使用BasicBlock()函数对特征图进行基础块的处理,最后通过BasicBlock1()函数得到一个大小为64的特征图。
接下来,使用Conv2D()函数进行卷积操作生成一个大小为8的特征图,然后通过MaxPooling2D()函数进行池化操作,将特征图的大小缩小一半。接着使用Flatten()函数将特征图展平,然后使用Dropout()函数进行正则化,避免过拟合。最后,使用Dense()函数生成一个输出层,输出1个值,激活函数为线性函数。最后,使用Model()函数将所有输入和输出组合成一个模型,并使用compile()函数编译模型,指定损失函数、优化器和评价指标。最终返回该模型。
相关问题
def MEAN_Spot(opt): # channel 1 inputs1 = layers.Input(shape=(42, 42, 1)) inputs2 = layers.Input(shape=(42, 42, 1)) inputs3 = layers.Input(shape=(42, 42, 1)) # merge 1 inputs = layers.Concatenate()([inputs1, inputs2, inputs3]) conv1 = layers.Conv2D(3, (7,7), padding='same', activation='relu', kernel_regularizer=l2(0.001))(inputs)改为class定义形式
你可以将这段代码转化为一个类的形式,例如:
```
from tensorflow.keras import layers
from tensorflow.keras.regularizers import l2
class MeanSpot:
def __init__(self):
self.inputs1 = layers.Input(shape=(42, 42, 1))
self.inputs2 = layers.Input(shape=(42, 42, 1))
self.inputs3 = layers.Input(shape=(42, 42, 1))
def build(self):
# merge 1
inputs = layers.Concatenate()([self.inputs1, self.inputs2, self.inputs3])
conv1 = layers.Conv2D(3, (7,7), padding='same', activation='relu', kernel_regularizer=l2(0.001))(inputs)
return conv1
```
这样,你就可以使用 `MeanSpot` 类来创建一个 `MEAN_Spot` 对象,然后调用 `build()` 方法来构建模型。例如:
```
mean_spot = MeanSpot()
model = mean_spot.build()
```
这个模型与原来的 `MEAN_Spot` 函数是等价的。
class BasicBlock(layers.Layer): expansion = 1 def __init__(self, in_channels, out_channels, stride=1):定义的basicblock模块之后如何放到def MEAN_Spot(opt): # channel 1 inputs1 = layers.Input(shape=(42, 42, 1)) inputs2 = layers.Input(shape=(42, 42, 1)) inputs3 = layers.Input(shape=(42, 42, 1)) # merge 1 inputs = layers.Concatenate()([inputs1, inputs2, inputs3]) conv1 = layers.Conv2D(3, (7,7), padding='same', activation='relu', kernel_regularizer=l2(0.001))(inputs)后面
可以使用`BasicBlock`类来定义一个基本块模块,然后在`MEAN_Spot`函数中调用该模块。具体实现方法如下:
```python
class BasicBlock(layers.Layer):
expansion = 1
def __init__(self, in_channels, out_channels, stride=1):
super(BasicBlock, self).__init__()
self.conv1 = layers.Conv2D(out_channels, kernel_size=3, strides=stride, padding='same', use_bias=False)
self.bn1 = layers.BatchNormalization()
self.relu = layers.ReLU()
self.conv2 = layers.Conv2D(out_channels * self.expansion, kernel_size=3, strides=1, padding='same', use_bias=False)
self.bn2 = layers.BatchNormalization()
if stride != 1 or in_channels != out_channels * self.expansion:
self.shortcut = keras.Sequential([
layers.Conv2D(out_channels * self.expansion, kernel_size=1, strides=stride, use_bias=False),
layers.BatchNormalization()
])
else:
self.shortcut = lambda x: x
def call(self, inputs):
x = self.conv1(inputs)
x = self.bn1(x)
x = self.relu(x)
x = self.conv2(x)
x = self.bn2(x)
x += self.shortcut(inputs)
x = self.relu(x)
return x
def MEAN_Spot(opt):
# channel 1
inputs1 = layers.Input(shape=(42, 42, 1))
inputs2 = layers.Input(shape=(42, 42, 1))
inputs3 = layers.Input(shape=(42, 42, 1))
# merge 1
inputs = layers.Concatenate()([inputs1, inputs2, inputs3])
x = layers.Conv2D(3, (7,7), padding='same', activation='relu', kernel_regularizer=l2(0.001))(inputs)
# basic block
x = BasicBlock(3, 16)(x)
x = BasicBlock(16, 32, stride=2)(x)
x = BasicBlock(32, 64, stride=2)(x)
# global average pooling
x = layers.GlobalAveragePooling2D()(x)
# output
outputs = layers.Dense(1, activation='sigmoid')(x)
# define model
model = keras.Model(inputs=[inputs1, inputs2, inputs3], outputs=outputs)
model.compile(optimizer=opt, loss='binary_crossentropy', metrics=['accuracy'])
return model
```
这里我们在`MEAN_Spot`函数中使用`BasicBlock`类来构建基本块模块,并且将该模块的输出作为下一个模块的输入。最后使用全局平均池化层和全连接层得到最终的输出。
阅读全文