解释一下每行代码 ori_data = pd.read_csv('F:/patient.csv') ori_data.loc[:, 'id'] = ori_data.loc[:, 'patient_id'].apply(lambda x: x[:7]) index = set(ori_data['id']) column = list(ori_data.columns) del column[0] del column[-1] average = pd.DataFrame(index=index, columns=column) for k in column: result = ori_data.groupby('id')[k].mean() average.loc[:, k] = result column = list(average.columns) data = average.loc[:, column[0]:column[-3]] # 自变量 target = average.loc[:, ['TIMEsurvival', 'EVENTdeath']],
时间: 2024-01-15 18:05:30 浏览: 90
Sure, 这段代码的作用是对'F:/patient.csv'中的数据进行处理,提取出自变量和目标变量。下面分行解释每段代码的作用:
1. `ori_data = pd.read_csv('F:/patient.csv')`:从磁盘中读取'F:/patient.csv'文件中的数据,存储为一个名为ori_data的DataFrame。
2. `ori_data.loc[:, 'id'] = ori_data.loc[:, 'patient_id'].apply(lambda x: x[:7])`:在原始数据DataFrame中增加一列'id',其中每个元素为'patient_id'的前7个字符。这一步目的是为了将所有ID转换为统一的格式,方便后面的计算。
3. `index = set(ori_data['id'])`:获取所有唯一的id值,存储为一个集合。
4. `column = list(ori_data.columns)`:获取所有列名,存储为一个列表。
5. `del column[0]`:删除第一列'patient_id',因为已经用'id'列代替。
6. `del column[-1]`:删除最后一列,即'EVENTdeath',因为这一列是目标变量。
7. `average = pd.DataFrame(index=index, columns=column)`:创建一个名为'average'的DataFrame,其中行是每个病人的ID,列是每个特征的名称。
8. `for k in column: result = ori_data.groupby('id')[k].mean() average.loc[:, k] = result`:对于每一列特征,计算每个病人的平均值,并将这些平均值存储在'average' DataFrame中。
9. `column = list(average.columns)`:获取'average' DataFrame中所有列的名称,存储为一个列表。
10. `data = average.loc[:, column[0]:column[-3]]`:从'average' DataFrame中提取自变量,即所有特征列,除了最后两列'TIMEsurvival'和'EVENTdeath'。
11. `target = average.loc[:, ['TIMEsurvival', 'EVENTdeath']]`:从'average' DataFrame中提取目标变量,即最后两列'TIMEsurvival'和'EVENTdeath'。
阅读全文