在pytorch基于resnet50的图像能见度检测的代码
时间: 2023-06-17 08:02:06 浏览: 141
以下是基于PyTorch实现的图像能见度检测代码,使用的是ResNet50模型:
```
import torch
import torch.nn as nn
import torchvision.models as models
class VisibilityNet(nn.Module):
def __init__(self):
super(VisibilityNet, self).__init__()
self.resnet = models.resnet50(pretrained=True)
self.fc1 = nn.Linear(1000, 256)
self.relu = nn.ReLU()
self.fc2 = nn.Linear(256, 1)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
x = self.resnet(x)
x = self.fc1(x)
x = self.relu(x)
x = self.fc2(x)
x = self.sigmoid(x)
return x
```
在训练数据集上训练模型时,可以使用以下代码:
```
import torch.optim as optim
import torch.utils.data as data
from torchvision import transforms
# Define transforms for data augmentation
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))
])
# Load the dataset using DataLoader
train_set = data.Dataset(train_data_path, transform=transform)
train_loader = data.DataLoader(train_set, batch_size=batch_size, shuffle=True)
# Initialize the model and optimizer
model = VisibilityNet()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
# Train the model on the training set
for epoch in range(num_epochs):
for i, (images, labels) in enumerate(train_loader):
images = images.to(device)
labels = labels.to(device)
optimizer.zero_grad()
outputs = model(images)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
```
其中,train_data_path是训练数据集的路径,batch_size是每个batch的大小,learning_rate是学习率,num_epochs是训练的轮数。在每个batch训练完后,通过计算损失和反向传播优化模型参数。
阅读全文
相关推荐
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![txt](https://img-home.csdnimg.cn/images/20241231045021.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)