函数 chart() 中的 result_dict 变量没有被赋值,如何实现

时间: 2024-03-10 08:46:20 浏览: 61
要实现在函数 `chart()` 中使用 `result_dict` 变量,需要在函数 `button_click()` 中生成 `result_dict` 并将其传递给函数 `chart()`。可以将 `result_dict` 定义为全局变量,并在 `button_click()` 函数中赋值,然后在 `chart()` 函数中使用即可。 以下是修改后的代码示例: ``` import tkinter as tk from sklearn.neighbors import KNeighborsClassifier from sklearn.model_selection import train_test_split import numpy as np import pandas as pd import matplotlib.pyplot as plt from matplotlib.figure import Figure from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg seeds = pd.read_csv("seed2.csv", sep='\t', header=None) X = seeds.iloc[:, :7].copy() y = seeds.iloc[:, -1].copy() global result_dict def knn_score(k, X, y): # 构造算法对象 knn = KNeighborsClassifier(n_neighbors=k) scores = [] train_scores = [] random = NIrandom_state.get() global test_size for i in range(100): # 拆分 if random_state != "": X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test, random_state=random) else: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test) # 训练 knn.fit(X_train, y_train) # 评价模型 scores.append(knn.score(X_test, y_test)) # 经验评分 train_scores.append(knn.score(X_train, y_train)) return np.array(scores).mean(), np.array(train_scores).mean() def root4(): root4 = tk.Toplevel() # 建立顶层控件wind root4.geometry("800x600") # 设置窗口大小 root4.title("测试集与训练集划分") # 设置窗口标题 label1 = tk.Label(root4, text="测试集与训练集划分", font=("Arial", 16)) label1.pack() global NIrandom_state, NItest_size NIrandom_state = tk.IntVar() tk.Label(root4, text="random_state:").place(x=50, y=50) tk.Entry(root4, textvariable=NIrandom_state).place(x=190, y=50) NItest_size = tk.DoubleVar() tk.Label(root4, text="用于测试的数据集比例:").place(x=50, y=110) tk.Entry(root4, textvariable=NItest_size).place(x=190, y=110) # 添加按钮 global button1, button2 button1 = tk.Button(root4, text="运算", font=("Arial", 12), command=button_click) button1.place(x=50, y=150) button2 = tk.Button(root4, text="图表展示", font=("Arial", 12), command=chart) button2.place(x=200, y=150) # 添加文本框 global text1 text1 = tk.Text(root4, width=50, height=10) text1.place(x=50, y=200) def button_click(): global test, random, result_dict random = int(NIrandom_state.get()) test = float(NItest_size.get()) result_dict = {} k_list = [1, 3, 5, 7, 9, 11] for k in k_list: score, train_score = knn_score(k, X, y) result_dict[k] = [score, train_score] result = pd.DataFrame(result_dict).T.copy() result.columns = ['Test', 'Train'] text = tk.Text(root4) text.place(x=100, y=220) text.insert("end", str(X_train)) text.insert("end", str(X_test)) text.insert("end", str(y_train)) text.insert("end", str(y_test)) text1.delete(1.0, tk.END) text1.insert(tk.END, str(result)) def chart(): root5 = tk.Toplevel() root5.title("结果图形") fig = Figure() ax = fig.add_subplot(111) k_list = [1, 3, 5, 7, 9, 11] global result_dict result = pd.DataFrame(result_dict).T.copy() result.columns = ['Test', 'Train'] result.plot(kind='line', ax=ax) ax.set_xticks(k_list) canvas = FigureCanvasTkAgg(fig, master=root5) canvas.get_tk_widget().pack() canvas.draw() root4() ``` 在这个修改后的代码中,`result_dict` 变量定义为全局变量,并在 `button_click()` 函数中生成和赋值,然后在 `chart()` 函数中使用。在 `chart()` 函数中,将 `result_dict` 转换为 `DataFrame` 对象,并通过 `plot` 方法将结果绘制在 `Figure` 对象上。最后,将 `FigureCanvasTkAgg` 对象插入到 `Toplevel` 窗口中,就可以显示结果图形了。
阅读全文

相关推荐

import tkinter as tk from sklearn.neighbors import KNeighborsClassifier from sklearn.model_selection import train_test_split import numpy as np import pandas as pd global button1 seeds=pd.read_csv("seed2.csv",sep='\t',header=None) X = seeds.iloc[:,:7].copy() y=seeds.iloc[:,-1].copy() X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=test,random_state=random) def knn_score(k,X,y):# 构造算法对象 knn = KNeighborsClassifier(n_neighbors = k) scores = [] train_scores = [] random=NIrandom_state.get() global test_size for i in range(100): # 拆分 if random_state!="": X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=test,random_state=random) else: X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=test) # 训练 knn.fit(X_train,y_train) # 评价模型 scores.append(knn.score(X_test,y_test)) # 经验评分 train_scores.append(knn.score(X_train,y_train)) return np.array(scores).mean(),np.array(train_scores).mean() def root4(): root4=tk.Toplevel()#建立顶层控件wind root4.geometry("800x600")#设置窗口大小 root4.title("测试集与训练集划分")#设置窗口标题 label1 = tk.Label(root4, text="测试集与训练集划分", font=("Arial", 16)) label1.pack() global NIrandom_state,NItest_size NIrandom_state= tk.IntVar() tk.Label(root4, text="random_state:").place(x=50, y=50) tk.Entry(root4, textvariable=NIrandom_state).place(x=190,y=50) NItest_size= tk.IntVar() tk.Label(root4, text="用于测试的数据集比例:").place(x=50,y=110) tk.Entry(root4, textvariable=NItest_size).place(x=190,y=110) # 添加按钮 global button1 button1 = tk.Button(root4, text="运算", font=("Arial", 12),command=button_click) button1.place(x=50,y=150) global button2 button2=tk.Button(root4,text="图表展示",font=("Arial", 12),command=chart) button2.place(x=100,y=150) # 添加文本框 global text1 text1 = tk.Text(root4, width=50, height=10) text1.place(x=50,y=200) # 绑定按钮def button_click(): global test,random random=int(NIrandom_state.get()) test=float(NItest_size.get()) global button1 result_dict = {} k_list = [1,3,5,7,9,11] for k in k_list: score,train_score = knn_score(k,X,y) result_dict[k] = [score,train_score] result = pd.DataFrame(result_dict).T.copy() result.columns = ['Test','Train'] text=tk.Text(root4) text.place(x=100, y=220) text.insert("end",X_train) text.insert("end",X_text) text.insert("end",y_train) text.insert("end",y_text) text1.delete(1.0, tk.END) text1.insert(tk.END, result) import tkinter as tk from matplotlib.figure import Figure from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg from matplotlib.backend_bases import key_press_handler import matplotlib.pyplot as plt %matplotlib inline def chart(): root5= tk.Toplevel() root5.title("结果图形") fig = plt.figure() k_list = [1,3,5,7,9,11] result_dict = {} canvas = FigureCanvasTkAgg(fig, master=root5) canvas.get_tk_widget().pack() canvas.draw() global result result = pd.DataFrame(result_dict).T.copy() plt.xticks(k_list) plt.show() root4.mainloop()其中有什么问题

最新推荐

recommend-type

pytorch 状态字典:state_dict使用详解

PyTorch中的`state_dict`是一个非常重要的工具,它用于保存和加载模型的参数。`state_dict`是一个Python字典,其中键是网络层的标识,值是对应层的权重和偏差等参数。这个功能使得在训练过程中可以方便地保存模型的...
recommend-type

python 解决动态的定义变量名,并给其赋值的方法(大数据处理)

在Python编程中,有时我们需要根据特定条件动态地创建变量并为其赋值,特别是在处理大量数据时,如在上述描述的场景中,数据处理涉及到多个类别和子类别的文件管理。在Python中,直接通过字符串拼接来创建变量是不...
recommend-type

Python跨文件全局变量的实现方法示例

在Python编程中,全局变量通常在单个文件或模块中使用,但在多文件项目中,有时需要在不同的文件之间共享同一个变量。为了实现这一需求,Python提供了多种方法。本篇文章将详细探讨如何在Python中实现跨文件全局变量...
recommend-type

如何在python中判断变量的类型

在Python中,有多种方法可以检查变量的类型,主要的两种方法是使用`isinstance()`函数和通过与已知类型的常量进行比较。 1. 使用`isinstance()`函数: `isinstance()`函数是Python中用来检查一个对象是否属于某个...
recommend-type

python使用threading获取线程函数返回值的实现方法

然而,Python的`threading`模块本身并不直接支持获取线程函数的返回值,这需要我们通过一些额外的方式来实现。以下将详细解释如何在Python中使用`threading`获取线程函数的返回值。 首先,我们需要理解`threading`...
recommend-type

JHU荣誉单变量微积分课程教案介绍

资源摘要信息:"jhu2017-18-honors-single-variable-calculus" 知识点一:荣誉单变量微积分课程介绍 本课程为JHU(约翰霍普金斯大学)的荣誉单变量微积分课程,主要针对在2018年秋季和2019年秋季两个学期开设。课程内容涵盖两个学期的微积分知识,包括整合和微分两大部分。该课程采用IBL(Inquiry-Based Learning)格式进行教学,即学生先自行解决问题,然后在学习过程中逐步掌握相关理论知识。 知识点二:IBL教学法 IBL教学法,即问题导向的学习方法,是一种以学生为中心的教学模式。在这种模式下,学生在教师的引导下,通过提出问题、解决问题来获取知识,从而培养学生的自主学习能力和问题解决能力。IBL教学法强调学生的主动参与和探索,教师的角色更多的是引导者和协助者。 知识点三:课程难度及学习方法 课程的第一次迭代主要包含问题,难度较大,学生需要有一定的数学基础和自学能力。第二次迭代则在第一次的基础上增加了更多的理论和解释,难度相对降低,更适合学生理解和学习。这种设计旨在帮助学生从实际问题出发,逐步深入理解微积分理论,提高学习效率。 知识点四:课程先决条件及学习建议 课程的先决条件为预演算,即在进入课程之前需要掌握一定的演算知识和技能。建议在使用这些笔记之前,先完成一些基础演算的入门课程,并进行一些数学证明的练习。这样可以更好地理解和掌握课程内容,提高学习效果。 知识点五:TeX格式文件 标签"TeX"意味着该课程的资料是以TeX格式保存和发布的。TeX是一种基于排版语言的格式,广泛应用于学术出版物的排版,特别是在数学、物理学和计算机科学领域。TeX格式的文件可以确保文档内容的准确性和排版的美观性,适合用于编写和分享复杂的科学和技术文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战篇:自定义损失函数】:构建独特损失函数解决特定问题,优化模型性能

![损失函数](https://img-blog.csdnimg.cn/direct/a83762ba6eb248f69091b5154ddf78ca.png) # 1. 损失函数的基本概念与作用 ## 1.1 损失函数定义 损失函数是机器学习中的核心概念,用于衡量模型预测值与实际值之间的差异。它是优化算法调整模型参数以最小化的目标函数。 ```math L(y, f(x)) = \sum_{i=1}^{N} L_i(y_i, f(x_i)) ``` 其中,`L`表示损失函数,`y`为实际值,`f(x)`为模型预测值,`N`为样本数量,`L_i`为第`i`个样本的损失。 ## 1.2 损
recommend-type

如何在ZYNQMP平台上配置TUSB1210 USB接口芯片以实现Host模式,并确保与Linux内核的兼容性?

要在ZYNQMP平台上实现TUSB1210 USB接口芯片的Host模式功能,并确保与Linux内核的兼容性,首先需要在硬件层面完成TUSB1210与ZYNQMP芯片的正确连接,保证USB2.0和USB3.0之间的硬件电路设计符合ZYNQMP的要求。 参考资源链接:[ZYNQMP USB主机模式实现与测试(TUSB1210)](https://wenku.csdn.net/doc/6nneek7zxw?spm=1055.2569.3001.10343) 具体步骤包括: 1. 在Vivado中设计硬件电路,配置USB接口相关的Bank502和Bank505引脚,同时确保USB时钟的正确配置。
recommend-type

Naruto爱好者必备CLI测试应用

资源摘要信息:"Are-you-a-Naruto-Fan:CLI测验应用程序,用于检查Naruto狂热者的知识" 该应用程序是一个基于命令行界面(CLI)的测验工具,设计用于测试用户对日本动漫《火影忍者》(Naruto)的知识水平。《火影忍者》是由岸本齐史创作的一部广受欢迎的漫画系列,后被改编成同名电视动画,并衍生出一系列相关的产品和文化现象。该动漫讲述了主角漩涡鸣人从忍者学校开始的成长故事,直到成为木叶隐村的领袖,期间包含了忍者文化、战斗、忍术、友情和忍者世界的政治斗争等元素。 这个测验应用程序的开发主要使用了JavaScript语言。JavaScript是一种广泛应用于前端开发的编程语言,它允许网页具有交互性,同时也可以在服务器端运行(如Node.js环境)。在这个CLI应用程序中,JavaScript被用来处理用户的输入,生成问题,并根据用户的回答来评估其对《火影忍者》的知识水平。 开发这样的测验应用程序可能涉及到以下知识点和技术: 1. **命令行界面(CLI)开发:** CLI应用程序是指用户通过命令行或终端与之交互的软件。在Web开发中,Node.js提供了一个运行JavaScript的环境,使得开发者可以使用JavaScript语言来创建服务器端应用程序和工具,包括CLI应用程序。CLI应用程序通常涉及到使用诸如 commander.js 或 yargs 等库来解析命令行参数和选项。 2. **JavaScript基础:** 开发CLI应用程序需要对JavaScript语言有扎实的理解,包括数据类型、函数、对象、数组、事件循环、异步编程等。 3. **知识库构建:** 测验应用程序的核心是其问题库,它包含了与《火影忍者》相关的各种问题。开发人员需要设计和构建这个知识库,并确保问题的多样性和覆盖面。 4. **逻辑和流程控制:** 在应用程序中,需要编写逻辑来控制测验的流程,比如问题的随机出现、计时器、计分机制以及结束时的反馈。 5. **用户界面(UI)交互:** 尽管是CLI,用户界面仍然重要。开发者需要确保用户体验流畅,这包括清晰的问题呈现、简洁的指令和友好的输出格式。 6. **模块化和封装:** 开发过程中应当遵循模块化原则,将不同的功能分隔开来,以便于管理和维护。例如,可以将问题生成器、计分器和用户输入处理器等封装成独立的模块。 7. **单元测试和调试:** 测验应用程序在发布前需要经过严格的测试和调试。使用如Mocha或Jest这样的JavaScript测试框架可以编写单元测试,并通过控制台输出调试信息来排除故障。 8. **部署和分发:** 最后,开发完成的应用程序需要被打包和分发。如果是基于Node.js的应用程序,常见的做法是将其打包为可执行文件(如使用electron或pkg工具),以便在不同的操作系统上运行。 根据提供的文件信息,虽然具体细节有限,但可以推测该应用程序可能采用了上述技术点。用户通过点击提供的链接,可能将被引导到一个网页或直接下载CLI应用程序的可执行文件,从而开始进行《火影忍者》的知识测验。通过这个测验,用户不仅能享受答题的乐趣,还可以加深对《火影忍者》的理解和认识。