import numpy as np import matplotlib.pyplot as plt import pandas as pd dataset = pd.read_csv('E:\Program Files (x86)\Apriori-Association-Rules-main\Market_Basket_Optimisation.csv', header = None) print(dataset) transactions = [] for i in range(0, 7501): transactions.append([str(dataset.values[i,j]) for j in range(0, 20)]) print(transactions) from apyori import apriori rules = apriori(transactions, min_support = 0.003, min_confidence = 0.8, min_lift = 3, min_length =2) results = list(rules) print(results)输出结果是[]

时间: 2024-04-21 11:29:45 浏览: 10
如果输出结果是[],则表示没有找到满足条件的关联规则。这可能是因为指定的参数阈值过高,导致数据集中没有满足条件的频繁项集和关联规则。建议逐步调整参数阈值,先降低 min_support 的值,让算法能够找到更多的频繁项集,然后再根据需要调整其他参数阈值。同时,也需要检查数据集的质量,看是否存在数据缺失或异常值等问题。
相关问题

import numpy as np import matplotlib.pyplot as plt import pandas as pd dataset = pd.read_csv('E:\Program Files (x86)\Apriori-Association-Rules-main\Market_Basket_Optimisation.csv', header = None) print(dataset)运行后,可视化显示各类商品的累计购买量应该如何写代码

你可以按照以下步骤可视化显示各种商品的累计购买量: 1. 统计每种商品被购买的次数。 2. 对商品按照购买次数进行排序。 3. 取出前十个购买次数最多的商品。 4. 使用 Matplotlib 库的 `pie()` 函数绘制饼图。 下面是实现代码: ```python import numpy as np import matplotlib.pyplot as plt import pandas as pd # 读入数据集 dataset = pd.read_csv('E:\Program Files (x86)\Apriori-Association-Rules-main\Market_Basket_Optimisation.csv', header=None) # 统计每种商品被购买的次数 items = {} for row in dataset.values: for item in row: if item not in items: items[item] = 1 else: items[item] += 1 # 对商品按照购买次数进行排序 sorted_items = sorted(items.items(), key=lambda x: x[1], reverse=True) # 取出前十个购买次数最多的商品 top_items = sorted_items[:10] # 绘制饼图 plt.pie([item[1] for item in top_items], labels=[item[0] for item in top_items], autopct='%1.1f%%') plt.axis('equal') plt.show() ``` 该代码会绘制出前十个购买次数最多的商品的饼图,每个扇形的标签是商品名称,扇形的大小表示购买次数。你可以根据需要修改代码中数据集的文件路径、显示的商品数量等参数。

import torchimport pandas as pdimport numpy as npimport matplotlib.pyplot as pltfrom torch.utils.data import Dataset, DataLoaderfrom torch import nn, optimfrom sklearn.decomposition import PCA运算过程

以上代码段中没有明显的运算过程,只是导入了一些Python库和模块。在这里简单介绍一下这些库和模块的作用: - torch:是一个开源的机器学习库,用于构建神经网络和其他机器学习模型。 - pandas:是一个用于数据处理和分析的Python库,支持导入和导出各种数据格式。 - numpy:是一个用于科学计算的Python库,支持大量的数值运算。 - matplotlib:是一个用于绘制图形的Python库,支持各种类型的图形绘制。 - Dataset和DataLoader:是PyTorch中用于加载和处理数据的类和模块。 - nn:是PyTorch中用于构建神经网络模型的类和模块。 - optim:是PyTorch中用于优化神经网络模型的类和模块。 - PCA:是一个用于数据降维的算法,可以通过sklearn库来实现。 在实际的机器学习代码中,这些库和模块通常会结合起来使用,进行数据处理、特征提取、模型构建和训练等各种操作。

相关推荐

修改一下这段代码在pycharm中的实现,import pandas as pd import numpy as np from sklearn.model_selection import train_test_split import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim #from torchvision import datasets,transforms import torch.utils.data as data #from torch .nn:utils import weight_norm import matplotlib.pyplot as plt from sklearn.metrics import precision_score from sklearn.metrics import recall_score from sklearn.metrics import f1_score from sklearn.metrics import cohen_kappa_score data_ = pd.read_csv(open(r"C:\Users\zhangjinyue\Desktop\rice.csv"),header=None) data_ = np.array(data_).astype('float64') train_data =data_[:,:520] train_Data =np.array(train_data).astype('float64') train_labels=data_[:,520] train_labels=np.array(train_data).astype('float64') train_data,train_data,train_labels,train_labels=train_test_split(train_data,train_labels,test_size=0.33333) train_data=torch.Tensor(train_data) train_data=torch.LongTensor(train_labels) train_data=train_data.reshape(-1,1,20,26) train_data=torch.Tensor(train_data) train_data=torch.LongTensor(train_labels) train_data=train_data.reshape(-1,1,20,26) start_epoch=1 num_epoch=1 BATCH_SIZE=70 Ir=0.001 classes=('0','1','2','3','4','5') device=torch.device("cuda"if torch.cuda.is_available()else"cpu") torch.backends.cudnn.benchmark=True best_acc=0.0 train_dataset=data.TensorDataset(train_data,train_labels) test_dataset=data.TensorDataset(train_data,train_labels) train_loader=torch.utills.data.DataLoader(dtaset=train_dataset,batch_size=BATCH_SIZE,shuffle=True) test_loader=torch.utills.data.DataLoader(dtaset=train_dataset,batch_size=BATCH_SIZE,shuffle=True)

将冒号后面的代码改写成一个nn.module类:import pandas as pd import numpy as np from sklearn.preprocessing import MinMaxScaler import matplotlib.pyplot as plt from keras.models import Sequential from keras.layers import Dense, LSTM data1 = pd.read_csv("终极1.csv", usecols=[17], encoding='gb18030') df = data1.fillna(method='ffill') data = df.values.reshape(-1, 1) scaler = MinMaxScaler(feature_range=(0, 1)) data = scaler.fit_transform(data) train_size = int(len(data) * 0.8) test_size = len(data) - train_size train, test = data[0:train_size, :], data[train_size:len(data), :] def create_dataset(dataset, look_back=1): dataX, dataY = [], [] for i in range(len(dataset)-look_back-1): a = dataset[i:(i+look_back), 0] dataX.append(a) dataY.append(dataset[i + look_back, 0]) return np.array(dataX), np.array(dataY) look_back = 30 trainX, trainY = create_dataset(train, look_back) testX, testY = create_dataset(test, look_back) trainX = np.reshape(trainX, (trainX.shape[0], 1, trainX.shape[1])) testX = np.reshape(testX, (testX.shape[0], 1, testX.shape[1])) model = Sequential() model.add(LSTM(50, input_shape=(1, look_back), return_sequences=True)) model.add(LSTM(50)) model.add(Dense(1)) model.compile(loss='mean_squared_error', optimizer='adam') model.fit(trainX, trainY, epochs=6, batch_size=1, verbose=2) trainPredict = model.predict(trainX) testPredict = model.predict(testX) trainPredict = scaler.inverse_transform(trainPredict) trainY = scaler.inverse_transform([trainY]) testPredict = scaler.inverse_transform(testPredict) testY = scaler.inverse_transform([testY])

import numpy as npimport pandas as pdimport matplotlib.pyplot as pltfrom sklearn.preprocessing import MinMaxScalerfrom keras.models import Sequentialfrom keras.layers import Dense, LSTM# 读取数据dataset = pd.read_csv('wind_speed.csv', header=0, index_col=0)dataset.index = pd.to_datetime(dataset.index)dataset = dataset.resample('H').mean()# 数据预处理scaler = MinMaxScaler(feature_range=(0, 1))dataset_scaled = scaler.fit_transform(dataset)# 创建训练集和测试集train_size = int(len(dataset_scaled) * 0.8)test_size = len(dataset_scaled) - train_sizetrain, test = dataset_scaled[0:train_size, :], dataset_scaled[train_size:len(dataset_scaled), :]# 创建数据集def create_dataset(dataset, look_back): dataX, dataY = [], [] for i in range(len(dataset)-look_back-1): a = dataset[i:(i+look_back), 0] dataX.append(a) dataY.append(dataset[i + look_back, 0]) return np.array(dataX), np.array(dataY)look_back = 24trainX, trainY = create_dataset(train, look_back)testX, testY = create_dataset(test, look_back)# 调整数据维度trainX = np.reshape(trainX, (trainX.shape[0], trainX.shape[1], 1))testX = np.reshape(testX, (testX.shape[0], testX.shape[1], 1))# 创建LSTM模型model = Sequential()model.add(LSTM(50, input_shape=(look_back, 1)))model.add(Dense(1))model.compile(loss='mean_squared_error', optimizer='adam')model.fit(trainX, trainY, epochs=100, batch_size=1, verbose=2)# 预测数据trainPredict = model.predict(trainX)testPredict = model.predict(testX)# 反转数据缩放trainPredict = scaler.inverse_transform(trainPredict)trainY = scaler.inverse_transform([trainY])testPredict = scaler.inverse_transform(testPredict)testY = scaler.inverse_transform([testY])# 绘制预测结果plt.plot(trainY[0], label='Train Data')plt.plot(trainPredict[:,0], label='Predicted Train Data')plt.plot(testY[0], label='Test Data')plt.plot(testPredict[:,0], label='Predicted Test Data')plt.legend(loc='best')plt.show()

最新推荐

recommend-type

6-10.py

6-10
recommend-type

基于机器学习的入侵检测系统+源码+说明.zip

基于机器学习的入侵检测系统+源码+说明.zip
recommend-type

matlab基于潜在低秩表示的红外与可见光图像融合.zip

matlab基于潜在低秩表示的红外与可见光图像融合.zip
recommend-type

4-5.py

4-5
recommend-type

基于tensorflow使用简单线性回归实现波士顿房价预测源码.zip

基于tensorflow使用简单线性回归实现波士顿房价预测源码.zip
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

2. 通过python绘制y=e-xsin(2πx)图像

可以使用matplotlib库来绘制这个函数的图像。以下是一段示例代码: ```python import numpy as np import matplotlib.pyplot as plt def func(x): return np.exp(-x) * np.sin(2 * np.pi * x) x = np.linspace(0, 5, 500) y = func(x) plt.plot(x, y) plt.xlabel('x') plt.ylabel('y') plt.title('y = e^{-x} sin(2πx)') plt.show() ``` 运行这段
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。