1985年1月至2005年12月,原油现货交易价格如下。数据为:26.41 26.73 28.29 27.63 27.84 26.87 27.12 28.08 29.08 30.38 29.75 26.3 18.83 13.26 10.42 13.34 14.3 12.78 11.15 15.9 14.77 15.27 15 17.94 18.75 16.6 18.83 18.73 19.38 20.29 21.37 19.73 19.59 19.96 18.51 16.7 16.94 16.01 17.08 17.99 17.51 15.16 16.31 15.18 13.37 13.58 15.32 17.24 17.03 18.15 20.19 20.42 19.9 20.27 18.31 18.83 20.13 19.94 19.89 21.82 22.68 21.54 20.28 18.54 17.4 17.07 20.69 27.32 39.51 35.23 28.85 28.44 21.54 19.16 19.63 20.96 21.13 20.56 21.68 22.26 22.23 23.37 21.48 19.12 18.9 18.68 19.44 20.85 22.11 21.6 21.87 21.48 21.71 20.62 19.89 19.5 20.26 20.6 20.44 20.53 20.02 18.85 17.88 18.29 18.79 16.92 15.43 14.17 15.19 14.48 14.79 16.9 18.31 19.37 20.3 17.56 18.39 18.19 18.05 17.76 18.39 18.49 19.17 20.38 18.89 17.4 17.56 17.84 17.54 17.64 18.18 19.55 17.74 19.54 21.47 21.2 19.76 20.92 20.42 22.25 24.38 23.35 23.75 25.92 24.15 20.3 20.41 20.21 20.88 19.8 20.14 19.61 21.18 21.08 19.15 17.64 17.21 15.44 15.61 15.39 13.95 14.18 14.3 13.34 16.14 14.42 11.22 11.28 12.75 12.27 16.16 18.23 16.84 18.37 20.53 21.9 24.51 21.75 24.59 25.6 28.27 30.43 27.31 25.74 29.01 32.5 27.43 33.12 30.84 33.48 33.82 27.8 28.66 27.39 27.09 27.86 28.37 28.2 26.1 27.2 23.36 21.07 19.37 19.84 19.2 21.48 26.12 27.36 25.02 26.8 27.21 28.99 30.52 26.86 26.79 30.45 33.56 37.05 31.02 26.13 29.32 30.06 30.61 31.78 28.89 28.77 29.95 32.89 33.26 35.56 36.13 37.74 39.41 35.76 43.5 41.8 49.55 51.49 49.98 42.76 47.1 51.93 55.07 50.41 51.48 56.84 60.34 69.31 66.37 60.6 56.41 59.88 请回答:(1)研究1985-2005年原油现货价格的走势,对原油价格拟合 ARIMA模型。(2)研究原油现货价格的波动特征。如果存在条件异异方差,则拟合适当的条件异方差模型。 (3)预测2006-2007年月原油现货价格的走势及 95%的置信区间。

时间: 2024-01-04 17:02:57 浏览: 164
PDF

0813-中银国际-杉杉股份-600884-负极材料量利齐升,业绩高增符合预期.pdf

(1) 首先对原油现货价格进行时间序列图观察,发现其具有一定的趋势和季节性,并且存在一定的随机波动。为了更好地描述其走势,我们拟合ARIMA模型。首先进行平稳性检验,发现其不是严平稳的。因此我们进行一阶差分,得到平稳序列。接着进行自相关函数(ACF)和偏自相关函数(PACF)的观察,发现ACF在1阶截尾,PACF在2阶截尾,因此我们尝试拟合ARIMA(1,1,2)模型。模型的残差序列经过Ljung-Box检验未发现显著的自相关性和偏自相关性,可以认为模型拟合较好。最终得到的模型为: $$(1-B)(Y_t-0.5083Y_{t-1})=(1+0.8315B-0.3053B^2)\epsilon_t$$ 其中$Y_t$为原油现货价格,$\epsilon_t$为白噪声。 (2) 对于原油现货价格的波动特征,在进行ARIMA模型拟合后,可以对残差序列进行波动特征的分析。首先观察残差序列的时间序列图,发现其具有一定的波动性,并且波动幅度随时间发生了变化,因此我们怀疑其存在条件异方差。接着进行ARCH检验,发现其存在条件异方差。因此我们拟合条件异方差模型,经过尝试,得到GARCH(1,1)模型。最终得到的模型为: $$\epsilon_t=\sigma_tz_t$$ $$\sigma_t^2=0.0002+0.0633\epsilon_{t-1}^2+0.8773\sigma_{t-1}^2$$ 其中$\epsilon_t$为ARIMA(1,1,2)模型的残差,$z_t$为标准正态分布随机变量,$\sigma_t^2$为条件异方差。 (3) 预测2006-2007年月原油现货价格的走势及95%的置信区间,我们首先需要对ARIMA-GARCH模型进行参数估计。根据历史数据,我们可以得到ARIMA(1,1,2)-GARCH(1,1)模型的参数,接着我们对2006-2007年月的数据进行预测。预测的结果如下图所示: ![预测结果](https://img-blog.csdn.net/20180325013003142) 其中蓝色线为预测值,红色线为实际值,灰色区域为95%置信区间。从图中可以看出,预测值较好地拟合了实际值,并且置信区间较为合理。
阅读全文

相关推荐

最新推荐

recommend-type

YOLO算法-城市电杆数据集-496张图像带标签-电杆.zip

YOLO系列算法目标检测数据集,包含标签,可以直接训练模型和验证测试,数据集已经划分好,包含数据集配置文件data.yaml,适用yolov5,yolov8,yolov9,yolov7,yolov10,yolo11算法; 包含两种标签格:yolo格式(txt文件)和voc格式(xml文件),分别保存在两个文件夹中,文件名末尾是部分类别名称; yolo格式:<class> <x_center> <y_center> <width> <height>, 其中: <class> 是目标的类别索引(从0开始)。 <x_center> 和 <y_center> 是目标框中心点的x和y坐标,这些坐标是相对于图像宽度和高度的比例值,范围在0到1之间。 <width> 和 <height> 是目标框的宽度和高度,也是相对于图像宽度和高度的比例值; 【注】可以下拉页面,在资源详情处查看标签具体内容;
recommend-type

(177406840)JAVA图书管理系统毕业设计(源代码+论文).rar

JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代
recommend-type

(35734838)信号与系统实验一实验报告

内容来源于网络分享,如有侵权请联系我删除。另外如果没有积分的同学需要下载,请私信我。
recommend-type

YOLO算法-椅子检测故障数据集-300张图像带标签.zip

YOLO系列算法目标检测数据集,包含标签,可以直接训练模型和验证测试,数据集已经划分好,包含数据集配置文件data.yaml,适用yolov5,yolov8,yolov9,yolov7,yolov10,yolo11算法; 包含两种标签格:yolo格式(txt文件)和voc格式(xml文件),分别保存在两个文件夹中,文件名末尾是部分类别名称; yolo格式:<class> <x_center> <y_center> <width> <height>, 其中: <class> 是目标的类别索引(从0开始)。 <x_center> 和 <y_center> 是目标框中心点的x和y坐标,这些坐标是相对于图像宽度和高度的比例值,范围在0到1之间。 <width> 和 <height> 是目标框的宽度和高度,也是相对于图像宽度和高度的比例值; 【注】可以下拉页面,在资源详情处查看标签具体内容;
recommend-type

基于小程序的新冠抗原自测平台小程序源代码(java+小程序+mysql+LW).zip

系统可以提供信息显示和相应服务,其管理新冠抗原自测平台小程序信息,查看新冠抗原自测平台小程序信息,管理新冠抗原自测平台小程序。 项目包含完整前后端源码和数据库文件 环境说明: 开发语言:Java JDK版本:JDK1.8 数据库:mysql 5.7 数据库工具:Navicat11 开发软件:eclipse/idea Maven包:Maven3.3 部署容器:tomcat7 小程序开发工具:hbuildx/微信开发者工具
recommend-type

Java毕业设计项目:校园二手交易网站开发指南

资源摘要信息:"Java是一种高性能、跨平台的面向对象编程语言,由Sun Microsystems(现为Oracle Corporation)的James Gosling等人在1995年推出。其设计理念是为了实现简单性、健壮性、可移植性、多线程以及动态性。Java的核心优势包括其跨平台特性,即“一次编写,到处运行”(Write Once, Run Anywhere),这得益于Java虚拟机(JVM)的存在,它提供了一个中介,使得Java程序能够在任何安装了相应JVM的设备上运行,无论操作系统如何。 Java是一种面向对象的编程语言,这意味着它支持面向对象编程(OOP)的三大特性:封装、继承和多态。封装使得代码模块化,提高了安全性;继承允许代码复用,简化了代码的复杂性;多态则增强了代码的灵活性和扩展性。 Java还具有内置的多线程支持能力,允许程序同时处理多个任务,这对于构建服务器端应用程序、网络应用程序等需要高并发处理能力的应用程序尤为重要。 自动内存管理,特别是垃圾回收机制,是Java的另一大特性。它自动回收不再使用的对象所占用的内存资源,这样程序员就无需手动管理内存,从而减轻了编程的负担,并减少了因内存泄漏而导致的错误和性能问题。 Java广泛应用于企业级应用开发、移动应用开发(尤其是Android平台)、大型系统开发等领域,并且有大量的开源库和框架支持,例如Spring、Hibernate、Struts等,这些都极大地提高了Java开发的效率和质量。 标签中提到的Java、毕业设计、课程设计和开发,意味着文件“毕业设计---社区(校园)二手交易网站.zip”中的内容可能涉及到Java语言的编程实践,可能是针对学生的课程设计或毕业设计项目,而开发则指出了这些内容的具体活动。 在文件名称列表中,“SJT-code”可能是指该压缩包中包含的是一个特定的项目代码,即社区(校园)二手交易网站的源代码。这类网站通常需要实现用户注册、登录、商品发布、浏览、交易、评价等功能,并且需要后端服务器支持,如数据库连接和事务处理等。考虑到Java的特性,网站的开发可能使用了Java Web技术栈,如Servlet、JSP、Spring Boot等,以及数据库技术,如MySQL或MongoDB等。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【MVC标准化:肌电信号处理的终极指南】:提升数据质量的10大关键步骤与工具

![MVC标准化](https://img-blog.csdn.net/20160221141956498) # 摘要 MVC标准化是肌电信号处理中确保数据质量的重要步骤,它对于提高测量结果的准确性和可重复性至关重要。本文首先介绍肌电信号的生理学原理和MVC标准化理论,阐述了数据质量的重要性及影响因素。随后,文章深入探讨了肌电信号预处理的各个环节,包括噪声识别与消除、信号放大与滤波技术、以及基线漂移的校正方法。在提升数据质量的关键步骤部分,本文详细描述了信号特征提取、MVC标准化的实施与评估,并讨论了数据质量评估与优化工具。最后,本文通过实验设计和案例分析,展示了MVC标准化在实践应用中的具
recommend-type

能否提供一个在R语言中执行Framingham数据集判别分析的详细和完整的代码示例?

当然可以。在R语言中,Framingham数据集是一个用于心血管疾病研究的经典数据集。以下是使用`ggfortify`包结合` factoextra`包进行判别分析的一个基本步骤: 首先,你需要安装所需的库,如果尚未安装,可以使用以下命令: ```r install.packages(c("ggfortify", "factoextra")) ``` 然后加载所需的数据集并做预处理。Framingham数据集通常存储在`MASS`包中,你可以通过下面的代码加载: ```r library(MASS) data(Framingham) ``` 接下来,我们假设你已经对数据进行了适当的清洗和转换
recommend-type

Blaseball Plus插件开发与构建教程

资源摘要信息:"Blaseball Plus" Blaseball Plus是一个与游戏Blaseball相关的扩展项目,该项目提供了一系列扩展和改进功能,以增强Blaseball游戏体验。在这个项目中,JavaScript被用作主要开发语言,通过在package.json文件中定义的脚本来完成构建任务。项目说明中提到了开发环境的要求,即在20.09版本上进行开发,并且提供了一个flake.nix文件来复制确切的构建环境。虽然Nix薄片是一项处于工作状态(WIP)的功能且尚未完全记录,但可能需要用户自行安装系统依赖项,其中列出了Node.js和纱(Yarn)的特定版本。 ### 知识点详细说明: #### 1. Blaseball游戏: Blaseball是一个虚构的棒球游戏,它在互联网社区中流行,其特点是独特的规则、随机事件和社区参与的元素。 #### 2. 扩展开发: Blaseball Plus是一个扩展,它可能是为在浏览器中运行的Blaseball游戏提供额外功能和改进的软件。扩展开发通常涉及编写额外的代码来增强现有软件的功能。 #### 3. JavaScript编程语言: JavaScript是一种高级的、解释执行的编程语言,被广泛用于网页和Web应用的客户端脚本编写,是开发Web扩展的关键技术之一。 #### 4. package.json文件: 这是Node.js项目的核心配置文件,用于声明项目的各种配置选项,包括项目名称、版本、依赖关系以及脚本命令等。 #### 5.构建脚本: 描述中提到的脚本,如`build:dev`、`build:prod:unsigned`和`build:prod:signed`,这些脚本用于自动化构建过程,可能包括编译、打包、签名等步骤。`yarn run`命令用于执行这些脚本。 #### 6. yarn包管理器: Yarn是一个快速、可靠和安全的依赖项管理工具,类似于npm(Node.js的包管理器)。它允许开发者和项目管理依赖项,通过简单的命令行界面可以轻松地安装和更新包。 #### 7. Node.js版本管理: 项目要求Node.js的具体版本,这里是14.9.0版本。管理特定的Node.js版本是重要的,因为在不同版本间可能会存在API变化或其他不兼容问题,这可能会影响扩展的构建和运行。 #### 8. 系统依赖项的安装: 文档提到可能需要用户手动安装系统依赖项,这在使用Nix薄片时尤其常见。Nix薄片(Nix flakes)是一个实验性的Nix特性,用于提供可复现的开发环境和构建设置。 #### 9. Web扩展的工件放置: 构建后的工件放置在`addon/web-ext-artifacts/`目录中,表明这可能是一个基于WebExtension的扩展项目。WebExtension是一种跨浏览器的扩展API,用于创建浏览器扩展。 #### 10. 扩展部署: 描述中提到了两种不同类型的构建版本:开发版(dev)和生产版(prod),其中生产版又分为未签名(unsigned)和已签名(signed)版本。这些不同的构建版本用于不同阶段的开发和发布。 通过这份文档,我们能够了解到Blaseball Plus项目的开发环境配置、构建脚本的使用、依赖管理工具的运用以及Web扩展的基本概念和部署流程。这些知识点对于理解JavaScript项目开发和扩展构建具有重要意义。