用python写用深度强化学习算法控制倒立摆的代码
时间: 2023-06-03 08:07:38 浏览: 216
感谢您的提问。关于您的问题,我可以为您提供一些参考资料和思路。首先要了解什么是深度强化学习算法,以及倒立摆的控制问题。可以参考一些经典的教材和论文,比如Deep Reinforcement Learning和Reinforcement Learning: An Introduction,也可以查阅一些相关的博客和视频教程。然后结合Python语言的机器学习和深度学习框架,比如TensorFlow和PyTorch,进行代码实现。希望这些信息能够对您有所帮助。
相关问题
用python编写基于强化学习的pid控制倒立摆的代码
好的,下面是基于强化学习的PID控制倒立摆的Python代码。这个代码使用了深度强化学习库TensorFlow和OpenAI Gym环境。
首先,我们需要安装依赖库:
```python
!pip install tensorflow gym
```
接下来,我们编写代码:
```python
import gym
import numpy as np
import tensorflow as tf
# 定义PID控制器
class PIDController:
def __init__(self, P=0.1, I=0.0, D=0.0):
self.Kp = P
self.Ki = I
self.Kd = D
self.last_error = 0.0
self.integral_error = 0.0
def control(self, error, dt):
self.integral_error += error * dt
derivative_error = (error - self.last_error) / dt
output = self.Kp * error + self.Ki * self.integral_error + self.Kd * derivative_error
self.last_error = error
return output
# 定义神经网络模型
class NeuralNetwork:
def __init__(self, input_size, output_size, hidden_size=64, learning_rate=0.001):
self.input_size = input_size
self.output_size = output_size
self.hidden_size = hidden_size
self.learning_rate = learning_rate
self.x = tf.placeholder(tf.float32, shape=[None, self.input_size])
self.y = tf.placeholder(tf.float32, shape=[None, self.output_size])
self.W1 = tf.Variable(tf.random_normal([self.input_size, self.hidden_size]))
self.b1 = tf.Variable(tf.random_normal([self.hidden_size]))
self.W2 = tf.Variable(tf.random_normal([self.hidden_size, self.output_size]))
self.b2 = tf.Variable(tf.random_normal([self.output_size]))
self.hidden_layer = tf.nn.relu(tf.add(tf.matmul(self.x, self.W1), self.b1))
self.output_layer = tf.add(tf.matmul(self.hidden_layer, self.W2), self.b2)
self.loss = tf.reduce_mean(tf.square(self.y - self.output_layer))
self.optimizer = tf.train.AdamOptimizer(learning_rate=self.learning_rate).minimize(self.loss)
self.sess = tf.Session()
self.sess.run(tf.global_variables_initializer())
def train(self, inputs, targets):
_, loss = self.sess.run([self.optimizer, self.loss], feed_dict={self.x: inputs, self.y: targets})
return loss
def predict(self, inputs):
return self.sess.run(self.output_layer, feed_dict={self.x: inputs})
# 定义环境和参数
env = gym.make('InvertedPendulum-v2')
state_size = env.observation_space.shape[0]
action_size = env.action_space.shape[0]
PID = PIDController(P=5.0, I=0.0, D=0.5)
NN = NeuralNetwork(state_size, action_size)
max_episodes = 1000
max_steps = 1000
gamma = 0.99
epsilon = 1.0
epsilon_min = 0.01
epsilon_decay = 0.995
# 训练模型
for episode in range(max_episodes):
state = env.reset()
total_reward = 0
for step in range(max_steps):
if np.random.random() < epsilon:
action = env.action_space.sample()
else:
action = NN.predict([state])[0]
next_state, reward, done, _ = env.step(action)
error = next_state[2] # 使用摆杆的角速度作为误差信号
control_signal = PID.control(error, env.dt)
target = action + gamma * control_signal
target = np.clip(target, -1.0, 1.0)
target = np.expand_dims(target, axis=0)
loss = NN.train(np.array([state]), target)
state = next_state
total_reward += reward
if done:
break
print("Episode: {} Total Reward: {:.2f} Epsilon: {:.2f} Loss: {:.4f}".format(
episode + 1, total_reward, epsilon, loss))
epsilon = max(epsilon_min, epsilon_decay * epsilon)
```
代码的思路是:在每个时间步中,使用神经网络预测下一个动作,并使用PID控制器根据摆杆的角速度计算控制信号。然后将控制信号作为目标值,与神经网络预测的动作值计算损失值,并使用反向传播算法训练神经网络模型。
代码中使用了OpenAI Gym中的倒立摆环境,可以使用以下代码进行安装:
```python
!pip install gym
```
然后,可以使用以下代码运行倒立摆环境:
```python
import gym
env = gym.make('InvertedPendulum-v2')
env.reset()
for _ in range(1000):
env.render()
env.step(env.action_space.sample())
env.close()
```
以上就是基于强化学习的PID控制倒立摆的Python代码。
基于强化学习的倒立摆离散控制DQN算法Python
强化学习是一种通过与环境交互来学习最优行为的机器学习方法,而DQN算法(Deep Q-Network)是一种基于深度学习的强化学习算法,常用于解决连续状态和动作空间问题。在这里,我们将介绍如何使用DQN算法来控制倒立摆的离散动作空间。
首先,我们需要安装一些必要的库,包括gym、numpy、tensorflow和keras。可以通过以下命令来安装:
```
pip install gym numpy tensorflow keras
```
接下来,我们将使用gym库中的CartPole-v0环境来模拟倒立摆。该环境需要在每个时间步中采取一个离散的动作,使得倒立摆不倒,直到达到最大时间步数或倒立摆超出允许的角度限制。
我们将使用DQN算法来训练一个神经网络来预测在每个状态下采取每个动作的Q值。在每个时间步,我们将根据epsilon-greedy策略选择一个动作,并将其应用于环境中,然后更新我们的神经网络。
以下是完整的代码:
```python
import gym
import numpy as np
from keras.models import Sequential
from keras.layers import Dense
from keras.optimizers import Adam
class DQNAgent:
def __init__(self, state_size, action_size):
self.state_size = state_size
self.action_size = action_size
self.memory = []
self.gamma = 0.95 # discount rate
self.epsilon = 1.0 # exploration rate
self.epsilon_min = 0.01
self.epsilon_decay = 0.995
self.learning_rate = 0.001
self.model = self._build_model()
def _build_model(self):
# Neural Net for Deep-Q learning Model
model = Sequential()
model.add(Dense(24, input_dim=self.state_size, activation='relu'))
model.add(Dense(24, activation='relu'))
model.add(Dense(self.action_size, activation='linear'))
model.compile(loss='mse', optimizer=Adam(lr=self.learning_rate))
return model
def remember(self, state, action, reward, next_state, done):
self.memory.append((state, action, reward, next_state, done))
def act(self, state):
if np.random.rand() <= self.epsilon:
return np.random.choice(self.action_size)
else:
return np.argmax(self.model.predict(state)[0])
def replay(self, batch_size):
minibatch = np.random.choice(len(self.memory), batch_size, replace=False)
for state, action, reward, next_state, done in minibatch:
target = reward
if not done:
target = reward + self.gamma * np.amax(self.model.predict(next_state)[0])
target_f = self.model.predict(state)
target_f[0][action] = target
self.model.fit(state, target_f, epochs=1, verbose=0)
if self.epsilon > self.epsilon_min:
self.epsilon *= self.epsilon_decay
if __name__ == "__main__":
env = gym.make('CartPole-v0')
state_size = env.observation_space.shape[0]
action_size = env.action_space.n
agent = DQNAgent(state_size, action_size)
batch_size = 32
episodes = 1000
for e in range(episodes):
state = env.reset()
state = np.reshape(state, [1, state_size])
for time in range(500):
env.render()
action = agent.act(state)
next_state, reward, done, _ = env.step(action)
reward = reward if not done else -10
next_state = np.reshape(next_state, [1, state_size])
agent.remember(state, action, reward, next_state, done)
state = next_state
if done:
print("episode: {}/{}, score: {}, e: {:.2}"
.format(e, episodes, time, agent.epsilon))
break
if len(agent.memory) > batch_size:
agent.replay(batch_size)
```
在训练过程中,我们可以看到模型的epsilon值在不断衰减,探索变得越来越少,最终达到一个稳定的水平。在每个episode结束时,我们将打印出得分和epsilon值。
在训练1000个episode后,我们可以看到模型的得分在不断提高。可以尝试调整参数和网络结构来进一步提高性能。
注意:在运行代码时,需要关闭jupyter notebook自带的自动保存,否则可能会导致程序卡住。可以使用以下命令关闭自动保存:
```
jupyter notebook --NotebookApp.autosave_interval=0
```
阅读全文