写带有一维收缩残差去噪效果的卷积自编码器代码
时间: 2023-10-10 09:11:44 浏览: 168
下面是一个使用一维收缩残差去噪的卷积自编码器的示例代码:
```python
import tensorflow as tf
from tensorflow.keras.layers import Conv1D, Conv1DTranspose, Input, Reshape
# 定义卷积自编码器
def autoencoder(input_shape):
# 编码器
inputs = Input(shape=input_shape)
encoded = Conv1D(32, 3, activation='relu', padding='same')(inputs)
encoded = Conv1D(16, 3, activation='relu', padding='same')(encoded)
# 解码器
decoded = Conv1DTranspose(16, 3, activation='relu', padding='same')(encoded)
decoded = Conv1DTranspose(32, 3, activation='relu', padding='same')(decoded)
decoded = Conv1D(1, 3, activation='sigmoid', padding='same')(decoded)
# 构建自编码器模型
autoencoder = tf.keras.Model(inputs, decoded)
return autoencoder
# 定义残差连接
def residual_block(x, filters, kernel_size):
residual = x
x = Conv1D(filters, kernel_size, activation='relu', padding='same')(x)
x = Conv1D(filters, kernel_size, activation=None, padding='same')(x)
x = tf.keras.layers.add([x, residual])
x = tf.keras.layers.Activation('relu')(x)
return x
# 定义带有一维收缩残差的卷积自编码器
def residual_autoencoder(input_shape):
# 编码器
inputs = Input(shape=input_shape)
encoded = Conv1D(32, 3, activation='relu', padding='same')(inputs)
encoded = residual_block(encoded, 16, 3)
# 解码器
decoded = Conv1DTranspose(16, 3, activation='relu', padding='same')(encoded)
decoded = residual_block(decoded, 32, 3)
decoded = Conv1D(1, 3, activation='sigmoid', padding='same')(decoded)
# 构建自编码器模型
autoencoder = tf.keras.Model(inputs, decoded)
return autoencoder
# 创建卷积自编码器模型
input_shape = (256, 1) # 输入形状
model = residual_autoencoder(input_shape)
model.summary()
```
上述代码中,我们定义了一个带有一维收缩残差的卷积自编码器模型。编码器部分由两个卷积层组成,解码器部分也是两个卷积层。在编码器中使用了一维残差连接来增加网络的深度和学习能力。最后,通过构建自编码器模型,并打印模型摘要,可以查看模型的结构和参数数量。请根据你的需求进行适当的修改和调整。
阅读全文