loads = pickle.loads AttributeError: module 'pickle' has no attribute 'loads'
时间: 2023-11-06 17:07:47 浏览: 266
根据您提供的引用,报错信息是因为在导入pickle模块时尝试使用了pickle.loads函数,但是pickle模块本身并没有loads这个属性。所以出现了AttributeError: module 'pickle' has no attribute 'loads'的错误。
为了解决这个问题,您需要使用pickle.load而不是pickle.loads函数来加载pkl文件。pickle.load函数用于从文件中加载pickle对象,而pickle.loads函数用于从字符串中加载pickle对象。
以下是正确的代码示例:
```python
import pickle
with open('.\data\MSVD\msvd_vocab.pkl','rb') as f:
v = pickle.load(f)
```
请注意,如果您仍然遇到其他问题,请提供更详细的错误信息以便进一步帮助您解决问题。
相关问题
运行results = pool.map(face_recognize, numbers)报错AttributeError: Can't pickle local object 'RockxFaceRecognition.run.<locals>.face_recognize'
这个错误通常是由于 multiprocessing 库无法序列化某些对象引起的。在您的情况下,似乎是由于 `face_recognize` 函数中的某些本地对象无法序列化。
为了解决这个问题,您可以尝试将 `face_recognize` 函数定义为一个独立的函数,而不是在 `run` 方法内部定义的本地函数。或者,您可以使用 `dill` 库对 `face_recognize` 函数进行序列化和反序列化,以便 multiprocessing 库可以正确地处理它。
具体来说,您可以尝试使用以下代码:
```
import dill
def run(self):
# ...
with multiprocessing.Pool(processes=4) as pool:
results = pool.map(dill.loads(dill.dumps(face_recognize)), numbers)
# ...
```
使用 `dill.loads(dill.dumps(face_recognize))` 将 `face_recognize` 函数序列化并反序列化,从而允许 multiprocessing 库正确地处理它。
AttributeError: Can't pickle local object 'SubPolicy.__init__.<locals>.<lambda>'
This error message indicates that you are trying to pickle (serialize) a local object named `lambda` that is defined inside the `__init__` method of a class named `SubPolicy`. Pickling local functions is not supported in Python by default and can lead to errors like this one.
To resolve this issue, you can define the `lambda` function outside of the `__init__` method, or you can use a different serialization method that supports pickling local functions, such as `dill` or `cloudpickle`. Here is an example of using `cloudpickle`:
```python
import cloudpickle
# define your SubPolicy class here
# create an instance of SubPolicy
sub_policy = SubPolicy()
# serialize the object using cloudpickle
pickled_sub_policy = cloudpickle.dumps(sub_policy)
# deserialize the object
unpickled_sub_policy = cloudpickle.loads(pickled_sub_policy)
```
Note that using third-party serialization methods like `dill` or `cloudpickle` may have security implications, so make sure to use them only with trusted code.
阅读全文