C++ long long 异或

时间: 2023-09-25 21:14:13 浏览: 266
在C++中,long long 是一个数据类型,表示长整型。而异或运算符(^)用于对两个操作数进行位异或操作。 如果你想对两个 long long 类型的变量进行异或运算,可以使用以下方式: ```cpp long long a = 10; long long b = 5; long long result = a ^ b; ``` 在上述示例中,result 的值将为 15,因为 10 和 5 的二进制表示分别为 1010 和 0101,它们进行位异或运算后得到 1111,即十进制的 15。 请注意,如果你使用的是无符号的 long long 类型(unsigned long long),那么异或运算将对无符号数的每一位进行操作。
相关问题

tire树求最大最下异或和

题目描述 给定一棵 $n$ 个节点的二叉树,每个节点上有一个整数。求二叉树中某个子树内的最大和最小数的异或和。 输入格式 第一行包含整数 $n$。 以下 $n$ 行每行描述二叉树的一个节点,格式为 ID val lson rson,其中 ID 表示节点编号(范围 1∼n),val 是节点上的整数,lson 和 rson 分别表示该节点的左儿子和右儿子的编号。若节点没有左儿子或右儿子,则对应位置为 0。 输出格式 一个整数,表示异或和。 数据范围 1≤n≤10^5,−10^9≤val≤10^9 输入样例1: 5 1 1 2 3 2 2 4 5 3 3 0 0 4 4 0 0 5 5 0 0 输出样例1: 7 输入样例2: 9 1 1 2 3 2 2 4 5 3 3 6 7 4 4 8 9 5 5 0 0 6 6 0 0 7 7 0 0 8 8 0 0 9 9 0 0 输出样例2: 8 算法 (Trie 树,后缀数组,分块) $O(n log n + n \log^2 mod)$ C++ 代码 用Trie树实现 ``` #include<iostream> #include<cstring> #include<algorithm> #include<cstdio> #include<stdlib.h> #include<time.h> using namespace std; #define f(a,b,c) for(a=b;a<=c;a++) #define g(a,b,c) for(a=b;a>=c;a--) #define ll long long const ll INF=2e9; const int N=1e5+7,M=1e6+7; inline int read(){ int x=0,f=1;char ch=getchar(); while(ch<'0'||ch>'9') {if(ch=='-') f=-1; ch=getchar();} while(ch>='0'&&ch<='9') {x=(x<<1)+(x<<3)+ch-'0';ch=getchar();} return x*f; } int e[M],ne[M],h[N],idx; void add(int a,int b){e[idx]=b;ne[idx]=h[a];h[a]=idx++;} int fa[N],dep[N],sz[N],son[N],wson[N],dfn[N],dnt,ndfn[N],tp[N]; struct Trie{ int son[2],cnt; }tr[N*32]; int rt[N]; int cnt; void update(int u,int k){ int p=rt[u],q=rt[cnt++]; int i,j; rt[u]=q,tr[q]=tr[p]; f(i,30,0){ tr[q].cnt=tr[p].cnt+1; j=(k>>i)&1; if(tr[p].son[j]==0){ tr[q].son[0]=tr[p].son[0],tr[q].son[1]=tr[p].son[1]; tr[q].son[j]=cnt++,tr[tr[q].son[j]]=(Trie){0,0}; } p=tr[p].son[j],q=tr[q].son[j]; } tr[q].cnt=tr[p].cnt+1; } int query(int u,int v,int k){ int p=rt[u],q=rt[v],res=0; int i,j; f(i,30,0){ j=(k>>i)&1; if(tr[tr[q].son[j^1]].cnt>tr[tr[p].son[j^1]].cnt) res=res|(1<<i),q=tr[q].son[j^1],p=tr[p].son[j^1]; else q=tr[q].son[j],p=tr[p].son[j]; } return res; } void dfs1(int u,int la){ dep[u]=dep[la]+1,fa[u]=la,sz[u]=1; int i,v,maxn=-1; for(i=h[u];~i;i=ne[i]){ v=e[i]; if(v==la) continue; dfs1(v,u); sz[u]+=sz[v]; if(sz[v]>maxn) maxn=sz[v],son[u]=v; } } void dfs2(int u){ int i,v; dfn[u]=++dnt,ndfn[dnt]=u; if(son[u]) wson[son[u]]=dfn[son[u]],tp[son[u]]=tp[u],dfs2(son[u]); else return; for(i=h[u];~i;i=ne[i]){ v=e[i]; if(v==fa[u]||v==son[u]) continue; wson[v]=dfn[v],tp[v]=v,dfs2(v); } } int find(int u,int v){ int f1=tp[u],f2=tp[v]; int ans=0; while(f1!=f2){ if(dep[f1]<dep[f2]) swap(u,v),swap(f1,f2); ans=max(ans,query(wson[f1],wson[u],v)); u=fa[f1],f1=tp[u]; } if(u==v) return ans; if(dep[u]<dep[v]) swap(u,v); return max(ans,query(wson[son[v]],wson[u],v)); } int main(){ int n=read(); memset(h,-1,sizeof h); int i,a,b,c,ans1=0x3f3f3f3f,ans2=-0x3f3f3f3f; f(i,1,n){ a=read(),b=read(),c=read(); if(c){ add(a,c),add(c,a); add(b,c),add(c,b); } else{ add(a,b),add(b,a); } } dfs1(1,0),wson[1]=dfn[1],tp[1]=1,dfs2(1); rt[0]=cnt++,tr[rt[0]]=(Trie){0,0}; f(i,1,n){ a=ndfn[i]; rt[a]=rt[fa[a]]; update(a,read()); } f(i,1,n){ a=ndfn[i]; ans1=min(ans1,query(rt[1],rt[a],read())); ans2=max(ans2,query(rt[1],rt[a],read())); } cout<<ans1+ans2; return 0; } ``` '''

我只允许你用c++实现计算i,i+1,i+2,...r的异或和 输入格式: 输入包括两个整数1<=i,r<=1018 输出格式: 输出题目描述中的整数 输入样例: 3 6 输出样例 4

好的,那我用 C++ 重新实现一遍。同样是利用异或的性质,求出 i-1 和 r 的异或和,再将两者异或即可得到 i 到 r 的异或和。 下面是 C++ 代码实现: ```cpp #include <iostream> using namespace std; int main() { long long i, r; cin >> i >> r; // 求出 i-1 的异或和 long long xor_i_1 = 0; for (int j = 0; j < 64; j++) { if ((i-1) & (1LL<<j)) { // 如果 i-1 的二进制表示的第 j 位为 1,则将 2^j 加入异或和 xor_i_1 ^= (1LL<<j); } } // 求出 r 的异或和 long long xor_r = 0; for (int j = 0; j < 64; j++) { if (r & (1LL<<j)) { // 如果 r 的二进制表示的第 j 位为 1,则将 2^j 加入异或和 xor_r ^= (1LL<<j); } } // 计算 i 到 r 的异或和 long long xor_i_to_r = xor_i_1 ^ xor_r; cout << xor_i_to_r << endl; return 0; } ``` 注意,这里使用了 `1LL` 表示长整型数值 1,而 `1L` 只是表示长整型数值 1。因为题目中的数据范围比较大,所以需要使用长整型。
阅读全文

相关推荐

最新推荐

recommend-type

c异或运算 c异或运算符号

C语言中的异或运算是一种位运算,用于处理整型或字符型数据,这些数据在计算机内存中被表示为二进制位串。异或运算符是"^",它执行的操作基于这样一个原则:如果两个位相同,结果为0;如果两个位不同,结果为1。例如...
recommend-type

C++中的按位与&、按位与或|、按位异或^运算符详解

本文将深入解析C++中的三种按位运算符:按位与(&),按位或(|),以及按位异或(^)。这些运算符用于对整数类型的二进制表示进行逐位操作,常用于低级数据处理和内存管理。 ### 按位与运算符(&) **语法:**`expression...
recommend-type

JavaScript中按位“异或”运算符使用介绍

在JavaScript中,按位“异或”运算符 (^) 是一种基本的逻辑运算符,用于对两个数值的二进制表示进行逐位比较并产生一个新的数值。这种运算符广泛应用于低级别的位操作,尤其是在处理二进制数据或者优化性能关键的...
recommend-type

c++文件加密课程设计

系统的设计基于C++语言,使用了多种加密算法,包括凯撒加密、异或加密、四方加密、栅栏加密和Base64加密。 系统的设计可以分为三个部分:界面类、文件类和加密类。界面类负责处理用户的输入和输出操作,文件类负责...
recommend-type

Java编程实现对十六进制字符串异或运算代码示例

"Java 编程实现对十六进制字符串异或运算代码示例" Java 编程实现对十六进制字符串异或运算代码示例是指使用 Java 语言实现对十六进制字符串进行异或运算的代码示例。在这个示例中,主要介绍了异或运算的定义、运算...
recommend-type

正整数数组验证库:确保值符合正整数规则

资源摘要信息:"validate.io-positive-integer-array是一个JavaScript库,用于验证一个值是否为正整数数组。该库可以通过npm包管理器进行安装,并且提供了在浏览器中使用的方案。" 该知识点主要涉及到以下几个方面: 1. JavaScript库的使用:validate.io-positive-integer-array是一个专门用于验证数据的JavaScript库,这是JavaScript编程中常见的应用场景。在JavaScript中,库是一个封装好的功能集合,可以很方便地在项目中使用。通过使用这些库,开发者可以节省大量的时间,不必从头开始编写相同的代码。 2. npm包管理器:npm是Node.js的包管理器,用于安装和管理项目依赖。validate.io-positive-integer-array可以通过npm命令"npm install validate.io-positive-integer-array"进行安装,非常方便快捷。这是现代JavaScript开发的重要工具,可以帮助开发者管理和维护项目中的依赖。 3. 浏览器端的使用:validate.io-positive-integer-array提供了在浏览器端使用的方案,这意味着开发者可以在前端项目中直接使用这个库。这使得在浏览器端进行数据验证变得更加方便。 4. 验证正整数数组:validate.io-positive-integer-array的主要功能是验证一个值是否为正整数数组。这是一个在数据处理中常见的需求,特别是在表单验证和数据清洗过程中。通过这个库,开发者可以轻松地进行这类验证,提高数据处理的效率和准确性。 5. 使用方法:validate.io-positive-integer-array提供了简单的使用方法。开发者只需要引入库,然后调用isValid函数并传入需要验证的值即可。返回的结果是一个布尔值,表示输入的值是否为正整数数组。这种简单的API设计使得库的使用变得非常容易上手。 6. 特殊情况处理:validate.io-positive-integer-array还考虑了特殊情况的处理,例如空数组。对于空数组,库会返回false,这帮助开发者避免在数据处理过程中出现错误。 总结来说,validate.io-positive-integer-array是一个功能实用、使用方便的JavaScript库,可以大大简化在JavaScript项目中进行正整数数组验证的工作。通过学习和使用这个库,开发者可以更加高效和准确地处理数据验证问题。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【损失函数与随机梯度下降】:探索学习率对损失函数的影响,实现高效模型训练

![【损失函数与随机梯度下降】:探索学习率对损失函数的影响,实现高效模型训练](https://img-blog.csdnimg.cn/20210619170251934.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzQzNjc4MDA1,size_16,color_FFFFFF,t_70) # 1. 损失函数与随机梯度下降基础 在机器学习中,损失函数和随机梯度下降(SGD)是核心概念,它们共同决定着模型的训练过程和效果。本
recommend-type

在ADS软件中,如何选择并优化低噪声放大器的直流工作点以实现最佳性能?

在使用ADS软件进行低噪声放大器设计时,选择和优化直流工作点是至关重要的步骤,它直接关系到放大器的稳定性和性能指标。为了帮助你更有效地进行这一过程,推荐参考《ADS软件设计低噪声放大器:直流工作点选择与仿真技巧》,这将为你提供实用的设计技巧和优化方法。 参考资源链接:[ADS软件设计低噪声放大器:直流工作点选择与仿真技巧](https://wenku.csdn.net/doc/9867xzg0gw?spm=1055.2569.3001.10343) 直流工作点的选择应基于晶体管的直流特性,如I-V曲线,确保工作点处于晶体管的最佳线性区域内。在ADS中,你首先需要建立一个包含晶体管和偏置网络
recommend-type

系统移植工具集:镜像、工具链及其他必备软件包

资源摘要信息:"系统移植文件包通常包含了操作系统的核心映像、编译和开发所需的工具链以及其他辅助工具,这些组件共同作用,使得开发者能够在新的硬件平台上部署和运行操作系统。" 系统移植文件包是软件开发和嵌入式系统设计中的一个重要概念。在进行系统移植时,开发者需要将操作系统从一个硬件平台转移到另一个硬件平台。这个过程不仅需要操作系统的系统镜像,还需要一系列工具来辅助整个移植过程。下面将详细说明标题和描述中提到的知识点。 **系统镜像** 系统镜像是操作系统的核心部分,它包含了操作系统启动、运行所需的所有必要文件和配置。在系统移植的语境中,系统镜像通常是指操作系统安装在特定硬件平台上的完整副本。例如,Linux系统镜像通常包含了内核(kernel)、系统库、应用程序、配置文件等。当进行系统移植时,开发者需要获取到适合目标硬件平台的系统镜像。 **工具链** 工具链是系统移植中的关键部分,它包括了一系列用于编译、链接和构建代码的工具。通常,工具链包括编译器(如GCC)、链接器、库文件和调试器等。在移植过程中,开发者使用工具链将源代码编译成适合新硬件平台的机器代码。例如,如果原平台使用ARM架构,而目标平台使用x86架构,则需要重新编译源代码,生成可以在x86平台上运行的二进制文件。 **其他工具** 除了系统镜像和工具链,系统移植文件包还可能包括其他辅助工具。这些工具可能包括: - 启动加载程序(Bootloader):负责初始化硬件设备,加载操作系统。 - 驱动程序:使得操作系统能够识别和管理硬件资源,如硬盘、显卡、网络适配器等。 - 配置工具:用于配置操作系统在新硬件上的运行参数。 - 系统测试工具:用于检测和验证移植后的操作系统是否能够正常运行。 **文件包** 文件包通常是指所有这些组件打包在一起的集合。这些文件可能以压缩包的形式存在,方便下载、存储和传输。文件包的名称列表中可能包含如下内容: - 操作系统特定版本的镜像文件。 - 工具链相关的可执行程序、库文件和配置文件。 - 启动加载程序的二进制代码。 - 驱动程序包。 - 配置和部署脚本。 - 文档说明,包括移植指南、版本说明和API文档等。 在进行系统移植时,开发者首先需要下载对应的文件包,解压后按照文档中的指导进行操作。在整个过程中,开发者需要具备一定的硬件知识和软件开发经验,以确保操作系统能够在新的硬件上正确安装和运行。 总结来说,系统移植文件包是将操作系统和相关工具打包在一起,以便于开发者能够在新硬件平台上进行系统部署。了解和掌握这些组件的使用方法和作用是进行系统移植工作的重要基础。