File "C:\Anaconda3\envs\deeplabv3plus\lib\site-packages\torch\nn\functional.py", line 2248, in _verify_batch_size raise ValueError("Expected more than 1 value per channel when training, got input size {}".format(size)) ValueError: Expected more than 1 value per channel when training, got input size torch.Size([1, 256, 1, 1])
时间: 2023-11-25 09:07:59 浏览: 103
这是一个错误消息,它表明在训练过程中预期每个通道至少有1个以上的值,但输入尺寸为torch.Size([1, 256, 1, 1])只有一个值。这可能是由于输入数据的形状不正确导致的。在深度学习中,通常期望输入数据的形状为[batch_size, channels, height, width]。请检查你的输入数据的形状是否符合这个要求,并确保在训练过程中有足够的值来进行每个通道的计算。
相关问题
Traceback (most recent call last): File "D:/faster-rcnn-pytorch-master/predict.py", line 82, in <module> r_image = frcnn.detect_image(image, crop=crop, count=count) File "D:\faster-rcnn-pytorch-master\frcnn.py", line 146, in detect_image roi_cls_locs, roi_scores, rois, _ = self.net(images) File "E:\Anaconda\envs\Rcnn\lib\site-packages\torch\nn\modules\module.py", line 547, in __call__ result = self.forward(*input, **kwargs) File "E:\Anaconda\envs\Rcnn\lib\site-packages\torch\nn\parallel\data_parallel.py", line 150, in forward return self.module(*inputs[0], **kwargs[0]) File "E:\Anaconda\envs\Rcnn\lib\site-packages\torch\nn\modules\module.py", line 547, in __call__ result = self.forward(*input, **kwargs) File "D:\faster-rcnn-pytorch-master\nets\frcnn.py", line 84, in forward roi_cls_locs, roi_scores = self.head.forward(base_feature, rois, roi_indices, img_size) File "D:\faster-rcnn-pytorch-master\nets\classifier.py", line 102, in forward fc7 = self.classifier(pool) File "E:\Anaconda\envs\Rcnn\lib\site-packages\torch\nn\modules\module.py", line 547, in __call__ result = self.forward(*input, **kwargs) File "E:\Anaconda\envs\Rcnn\lib\site-packages\torch\nn\modules\container.py", line 92, in forward input = module(input) File "E:\Anaconda\envs\Rcnn\lib\site-packages\torch\nn\modules\module.py", line 547, in __call__ result = self.forward(*input, **kwargs) File "E:\Anaconda\envs\Rcnn\lib\site-packages\torch\nn\modules\container.py", line 92, in forward input = module(input) File "E:\Anaconda\envs\Rcnn\lib\site-packages\torch\nn\modules\module.py", line 547, in __call__ result = self.forward(*input, **kwargs) File "D:\faster-rcnn-pytorch-master\nets\resnet50.py", line 31, in forward out = self.conv2(out) File "E:\Anaconda\envs\Rcnn\lib\site-packages\torch\nn\modules\module.py", line 547, in __call__ result = self.forward(*input, **kwargs) File "E:\Anaconda\envs\Rcnn\lib\site-packages\torch\nn\modules\conv.py", line 343, in forward return self.conv2d_forward(input, self.weight) File "E:\Anaconda\envs\Rcnn\lib\site-packages\torch\nn\modules\conv.py", line 340, in conv2d_forward self.padding, self.dilation, self.groups) RuntimeError: cuDNN error: CUDNN_STATUS_EXECUTION_FAILED这是什么错误
这个错误是由于cuDNN执行失败引起的。cuDNN是一个在GPU上加速深度神经网络计算的库。CUDNN_STATUS_EXECUTION_FAILED表示cuDNN在执行过程中遇到了错误。
这个错误可能有多种原因,包括但不限于以下几点:
1. GPU驱动问题:请确保你的GPU驱动是最新的,并且与你使用的深度学习框架兼容。
2. CUDA版本问题:请确保你的CUDA版本与你使用的深度学习框架要求的CUDA版本匹配。
3. GPU显存不足:cuDNN可能需要大量的显存来执行计算。请确保你的GPU显存足够,并且没有被其他进程占用。
4. 网络结构问题:某些网络结构可能不适用于cuDNN加速,你可以尝试修改网络结构或者使用其他的深度学习框架。
如果以上解决方法都不起作用,你可以尝试搜索相关的错误信息来获取更多的帮助,或者向相关的开发者社区寻求支持。
Traceback (most recent call last): File "C:\Users\夏芷琳\Desktop\recommendation_model-master\DCN\dcn.py", line 200, in <module> model = DCN(feat_sizes, embedding_size, linear_feature_columns, dnn_feature_columns).to(device) File "D:\Anaconda\envs\pytorch\lib\site-packages\torch\nn\modules\module.py", line 1145, in to return self._apply(convert) File "D:\Anaconda\envs\pytorch\lib\site-packages\torch\nn\modules\module.py", line 797, in _apply module._apply(fn) File "D:\Anaconda\envs\pytorch\lib\site-packages\torch\nn\modules\module.py", line 797, in _apply module._apply(fn) File "D:\Anaconda\envs\pytorch\lib\site-packages\torch\nn\modules\module.py", line 820, in _apply param_applied = fn(param) File "D:\Anaconda\envs\pytorch\lib\site-packages\torch\nn\modules\module.py", line 1143, in convert return t.to(device, dtype if t.is_floating_point() or t.is_complex() else None, non_blocking) File "D:\Anaconda\envs\pytorch\lib\site-packages\torch\cuda\__init__.py", line 239, in _lazy_init raise AssertionError("Torch not compiled with CUDA enabled") AssertionError: Torch not compiled with CUDA enabled
这是一个Python程序出现的错误,错误信息是 Torch not compiled with CUDA enabled。这个错误通常是因为你使用的PyTorch版本没有启用CUDA或CUDA安装出现问题。你可以检查你的PyTorch版本是否支持CUDA,或者重新安装PyTorch并确保安装了CUDA。
阅读全文
相关推荐
















