Traceback (most recent call last): File "D:\Pycharm\PyCharm 2020.2.5\plugins\python\helpers\pydev\pydevd.py", line 1448, in _exec pydev_imports.execfile(file, globals, locals) # execute the script File "D:\Pycharm\PyCharm 2020.2.5\plugins\python\helpers\pydev\_pydev_imps\_pydev_execfile.py", line 18, in execfile exec(compile(contents+"\n", file, 'exec'), glob, loc) File "C:/Users/wz/Desktop/Framework to practice/多尺度Demo/demo.py", line 269, in <module> summary(net, (3, 224, 224)) File "D:\anaconda3\envs\pytorch\lib\site-packages\torchsummary\torchsummary.py", line 72, in summary model(*x) File "D:\anaconda3\envs\pytorch\lib\site-packages\torch\nn\modules\module.py", line 1130, in _call_impl return forward_call(*input, **kwargs) File "C:/Users/wz/Desktop/Framework to practice/多尺度Demo/demo.py", line 228, in forward out = self.MSB3d(out) File "D:\anaconda3\envs\pytorch\lib\site-packages\torch\nn\modules\module.py", line 1148, in _call_impl result = forward_call(*input, **kwargs) File "C:/Users/wz/Desktop/Framework to practice/多尺度Demo/demo.py", line 135, in forward self.branch3x3dbl_3b(branch3x3dbl), File "D:\anaconda3\envs\pytorch\lib\site-packages\torch\nn\modules\module.py", line 1148, in _call_impl result = forward_call(*input, **kwargs) File "C:/Users/wz/Desktop/Framework to practice/多尺度Demo/demo.py", line 42, in forward x = self.conv(x) File "D:\anaconda3\envs\pytorch\lib\site-packages\torch\nn\modules\module.py", line 1148, in _call_impl result = forward_call(*input, **kwargs) File "D:\anaconda3\envs\pytorch\lib\site-packages\torch\nn\modules\conv.py", line 457, in forward return self._conv_forward(input, self.weight, self.bias) File "D:\anaconda3\envs\pytorch\lib\site-packages\torch\nn\modules\conv.py", line 453, in _conv_forward return F.conv2d(input, weight, bias, self.stride, RuntimeError: Given groups=1, weight of size [256, 256, 3, 1], expected input[2, 128, 14, 14] to have 256 channels, but got 128 channels instead
时间: 2023-08-11 18:06:16 浏览: 243
这个错误是由于卷积层的输入通道数不匹配引起的。根据错误信息,期望的输入通道数是256,但实际上却是128。
可能的原因是在定义网络架构时,某个卷积层的输出通道数与下一层的输入通道数不匹配。你可以检查一下代码中的网络定义部分,确保每个卷积层的输出通道数与下一层的输入通道数相等。
另外,你还可以检查一下数据输入部分,确保输入数据的通道数为3(根据代码中的提示,输入的形状应该是[2, 128, 14, 14])。
如果你能提供网络架构和数据输入的代码,我可以更详细地帮助你解决这个问题。
相关问题
Traceback (most recent call last): File "<input>", line 1, in <module> File "E:\PyCharm 2020.2.4\plugins\python\helpers\pydev\_pydev_bundle\pydev_umd.py", line 197, in runfile pydev_imports.execfile(filename, global_vars, local_vars) # execute the script File "E:\PyCharm 2020.2.4\plugins\python\helpers\pydev\_pydev_imps\_pydev_execfile.py", line 18, in execfile exec(compile(contents+"\n", file, 'exec'), glob, loc) File "D:/PycharmProjects/pythonProject5/game/test_demo.py", line 4, in <module> from .demo01 import Add File "E:\PyCharm 2020.2.4\plugins\python\helpers\pydev\_pydev_bundle\pydev_import_hook.py", line 21, in do_import module = self._system_import(name, *args, **kwargs) ImportError: attempted relative import with no known parent package
这个错误是由于相对导入时没有找到父包的原因导致的。在Python中,相对导入需要明确指定父包,如果没有明确指定,Python会认为当前模块是顶级模块,因此会报错。
要解决这个问题,你可以尝试以下几种方法:
1. 使用绝对导入:将相对导入改为绝对导入,即使用完整的包路径来导入模块。例如,如果你想导入的模块位于兄弟包中,可以使用`from package_name.module_name import function_name`来导入。
2. 添加包路径:在代码中添加父包的路径,以确保Python可以找到父包。你可以使用sys.path.append()或者设置PYTHONPATH环境变量来添加包路径。
3. 修改项目结构:如果你的项目结构不合理,可以考虑重新组织代码结构,使得相对导入可以正常工作。
希望这些解决方法能帮到你!如果有任何疑问,请随时提问。
Traceback (most recent call last): File "D:\Pycharm\PyCharm 2020.2.5\plugins\python\helpers\pydev\pydevd.py", line 1448, in _exec pydev_imports.execfile(file, globals, locals) # execute the script File "D:\Pycharm\PyCharm 2020.2.5\plugins\python\helpers\pydev\_pydev_imps\_pydev_execfile.py", line 18, in execfile exec(compile(contents+"\n", file, 'exec'), glob, loc) File "C:/Users/wz/Desktop/Framework to practice/多尺度Demo/model.py", line 177, in <module> summary(net, (3, 224, 224)) File "D:\anaconda3\envs\pytorch\lib\site-packages\torchsummary\torchsummary.py", line 72, in summary model(*x) File "D:\anaconda3\envs\pytorch\lib\site-packages\torch\nn\modules\module.py", line 1130, in _call_impl return forward_call(*input, **kwargs) File "C:/Users/wz/Desktop/Framework to practice/多尺度Demo/model.py", line 134, in forward x = self.MSB3a(x) File "D:\anaconda3\envs\pytorch\lib\site-packages\torch\nn\modules\module.py", line 1148, in _call_impl result = forward_call(*input, **kwargs) File "C:/Users/wz/Desktop/Framework to practice/多尺度Demo/model.py", line 63, in forward return torch.cat(outputs,1) TypeError: expected Tensor as element 3 in argument 0, but got Sequential
这个错误是由于在代码的最后一行,尝试将输出结果进行拼接时,其中包含一个`nn.Sequential`对象。而torch.cat()函数要求参数是Tensor类型,而不是`nn.Sequential`对象。
要解决这个问题,你需要修改代码的最后一行,将`branch4 = self.branch4`改为`branch4 = self.branch4(x)`。这样就可以将输入x通过最大池化层和1x1的卷积层操作得到一个Tensor类型的结果。
然后再进行拼接操作时,就不会出现类型错误了。这样你就可以获得四个分支的输出结果,并将它们拼接成一个Tensor类型的结果并返回了。
阅读全文
相关推荐
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![pptx](https://img-home.csdnimg.cn/images/20241231044947.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)