import numpy as npimport cv2# 读取图像img = cv2.imread('lena.png', 0)# 添加高斯噪声mean = 0var = 0.1sigma = var ** 0.5noise = np.random.normal(mean, sigma, img.shape)noisy_img = img + noise# 定义维纳滤波器函数def wiener_filter(img, psf, K=0.01): # 计算傅里叶变换 img_fft = np.fft.fft2(img) psf_fft = np.fft.fft2(psf) # 计算功率谱 img_power = np.abs(img_fft) ** 2 psf_power = np.abs(psf_fft) ** 2 # 计算信噪比 snr = img_power / (psf_power + K) # 计算滤波器 result_fft = img_fft * snr / psf_fft result = np.fft.ifft2(result_fft) # 返回滤波结果 return np.abs(result)# 定义维纳滤波器的卷积核kernel_size = 3kernel = np.ones((kernel_size, kernel_size)) / kernel_size ** 2# 计算图像的自相关函数acf = cv2.calcHist([img], [0], None, [256], [0, 256])# 计算维纳滤波器的卷积核gamma = 0.1alpha = 0.5beta = 1 - alpha - gammapsf = np.zeros((kernel_size, kernel_size))for i in range(kernel_size): for j in range(kernel_size): i_shift = i - kernel_size // 2 j_shift = j - kernel_size // 2 psf[i, j] = np.exp(-np.pi * ((i_shift ** 2 + j_shift ** 2) / (2 * alpha ** 2))) * np.cos(2 * np.pi * (i_shift + j_shift) / (2 * beta))psf = psf / np.sum(psf)# 对带噪声图像进行维纳滤波filtered_img = wiener_filter(noisy_img, psf)# 显示结果cv2.imshow('Original Image', img)cv2.imshow('Noisy Image', noisy_img)cv2.imshow('Filtered Image', filtered_img)cv2.waitKey(0)cv2.destroyAllWindows()这段代码报错为Traceback (most recent call last): File "<input>", line 1, in <module> File "D:\Pycharm\PyCharm 2020.3.5\plugins\python\helpers\pydev\_pydev_bundle\pydev_umd.py", line 197, in runfile pydev_imports.execfile(filename, global_vars, local_vars) # execute the script File "D:\Pycharm\PyCharm 2020.3.5\plugins\python\helpers\pydev\_pydev_imps\_pydev_execfile.py", line 18, in execfile exec(compile(contents+"\n", file, 'exec'), glob, loc) File "E:/Python_project/class_/weinalvboqi.py", line 54, in <module> filtered_img = wiener_filter(noisy_img, psf) File "E:/Python_project/class_/weinalvboqi.py", line 25, in wiener_filter snr = img_power / (psf_power + K) ValueError: operands could not be broadcast together with shapes (1024,2800) (3,3)什么意思,如何修改
时间: 2024-04-01 07:38:13 浏览: 106
这个错误的意思是图像的噪声卷积核和维纳滤波器的卷积核形状不匹配,导致无法进行计算。可以尝试将维纳滤波器的卷积核的大小调整为与图像的噪声卷积核相同的大小,或者将图像的噪声卷积核的大小调整为与维纳滤波器的卷积核相同的大小。同时,还需要注意在计算傅里叶变换和功率谱时,需要对卷积核进行中心化处理,即将卷积核的中心移动到图像的中心位置。
相关问题
imFFT = np.fft.fft2(im) imFFTshift = np.fft.fftshift(imFFT) imFFTabs = np.abs(imFFTshift) imFFTabs = 30*np.log(imFFTabs)接下来怎么做
接下来可以将变换结果显示出来,以便观察图像频谱特征。以下是一个示例代码,用于将一张图像的傅里叶变换结果显示出来:
```python
import cv2
import numpy as np
from matplotlib import pyplot as plt
# 读入图像
im = cv2.imread('lena.jpg', 0)
# 进行傅里叶变换
imFFT = np.fft.fft2(im)
imFFTshift = np.fft.fftshift(imFFT)
imFFTabs = np.abs(imFFTshift)
imFFTabs = 30*np.log(imFFTabs)
# 显示变换结果
plt.subplot(121), plt.imshow(im, cmap='gray')
plt.title('Input Image'), plt.xticks([]), plt.yticks([])
plt.subplot(122), plt.imshow(imFFTabs, cmap='gray')
plt.title('Magnitude Spectrum'), plt.xticks([]), plt.yticks([])
plt.show()
```
其中,`cv2.imread()` 用于读入图像,`np.fft.fft2()` 用于进行傅里叶变换,`np.fft.fftshift()` 用于将结果进行中心化处理,`np.abs()` 用于计算变换结果的幅值,`30*np.log()` 用于计算频率分量大小的对数值。最后,用 `plt.imshow()` 函数显示原始图像和傅里叶变换结果。
cv2.imread解决中文路径
cv2.imread无法读取含有中文的文件路径,但可以通过以下方法解决这个问题:
1.导入cv2和numpy库。
2.定义一个函数cv_imread(filePath),该函数使用np.fromfile()读取文件并使用cv2.imdecode()解码图像。
3.在主函数中调用cv_imread()函数并传入文件路径,然后使用cv2.imshow()显示图像。
4.使用cv2.waitKey()等待用户按下键盘上的任意键。
5.使用cv2.imencode()将图像编码为JPEG格式并使用tofile()保存到指定路径。
代码如下:
```python
import cv2
import numpy as np
def cv_imread(filePath):
cv_img = cv2.imdecode(np.fromfile(filePath, dtype=np.uint8), -1)
return cv_img
if __name__ == '__main__':
path = 'E:/images/百合/百合1.jpg'
img = cv_imread(path)
cv2.namedWindow('lena', cv2.WINDOW_AUTOSIZE)
cv2.imshow('lena', img)
k = cv2.waitKey(0)
cv2.imencode('.jpg', img)[1].tofile('百合.jpg')
```
阅读全文
相关推荐

















