matlab已知函数值求自变量,函数表达式为y=16.88*exp(0.0903*x) + (-37.75)*exp((-12.73)*x)
时间: 2023-12-18 17:02:38 浏览: 140
要在MATLAB中求解已知函数值的自变量,可以使用数值求解方法,如牛顿法或二分法。以下是一个使用二分法的示例代码:
```matlab
% 已知函数表达式
f = @(x) 16.88*exp(0.0903*x) + (-37.75)*exp((-12.73)*x);
% 已知函数值
y = 10;
% 设置搜索范围
x_low = -100;
x_high = 100;
% 设置精度
tolerance = 0.0001;
% 使用二分法求解自变量
while abs(x_high - x_low) > tolerance
x_mid = (x_low + x_high) / 2;
y_mid = f(x_mid);
if y_mid < y
x_low = x_mid;
else
x_high = x_mid;
end
end
% 输出结果
x_solution = (x_low + x_high) / 2;
disp(x_solution);
```
在上面的示例中,我们首先定义了函数`f`,使用匿名函数的形式表示已知函数表达式。然后指定了已知的函数值`y`为10。接下来,我们设置了搜索范围`x_low`和`x_high`,以及精度`tolerance`。然后使用二分法进行迭代搜索,直到找到满足精度要求的自变量。最后,我们输出结果`x_solution`。
请注意,这只是一个示例代码,用于演示如何在MATLAB中求解已知函数值的自变量。对于不同的函数和求解要求,可能需要使用其他数值求解方法或调整代码逻辑。
阅读全文
相关推荐


















