void shenboAI::Predict(tensorflow::Tensor &image_t, tensorflow::Tensor &image_c, std::vector<float>& results) { LOG(INFO) << "Enter shenboAI::PredictFp"; string input_layer = "input_5"; string input_layer2 = "cinput_6"; string output_layer = "dense_9/Softmax"; std::vector<Tensor> outputs; Status run_status = session_classification->Run({{input_layer, image_t},{input_layer2, image_c}}, {output_layer}, {}, &outputs);
时间: 2024-04-14 07:31:49 浏览: 217
Particle-filtering.zip_particle filtering_site:www.pudn.com
这段代码是C++中的一个函数定义,函数名为`shenboAI::Predict`。它接受两个`tensorflow::Tensor`类型的输入参数`image_t`和`image_c`,以及一个`std::vector<float>`类型的输出参数`results`。
函数内部首先指定了输入层和输出层的名称,分别为`input_layer`、`input_layer2`和`output_layer`。然后创建了一个空的`std::vector<Tensor>`类型的向量`outputs`,用于存储模型的输出结果。
接下来,通过调用`session_classification->Run`函数来运行模型推理。函数的第一个参数是一个包含输入层名称和对应输入张量的列表,其中使用了双大括号进行初始化。第二个参数是一个包含输出层名称的列表。第三个参数是一个空的feed字典(feed_dict),用于传递额外的信息(在此处为空)。最后一个参数是指向输出结果的指针。
函数执行完毕后,模型的推理结果将会存储在`outputs`向量中,并通过引用传递给函数外部的`results`向量。
阅读全文