用Python写一段基于“订单表”“用户表”“用户购买信息表”“用户评论表”“用户行为表”完成以下任务: 探索用户购买行为数据并用可视化展示信息; 寻找相似用户群体; 分析用户群对商品的喜好度; 给用户推荐商品。
时间: 2024-12-14 12:22:22 浏览: 3
基于Python和Flask的汽车销售管理系统的设计与实现.docx
在Python中,我们可以使用Pandas库来处理表格数据,并结合matplotlib或seaborn库进行数据可视化。以下是一个基本的步骤指南:
1. **导入所需的库**:
```python
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.cluster import KMeans
from surprise import Reader, Dataset, SVD, accuracy
```
2. **加载数据**:
```python
# 假设数据存储为CSV文件
order_df = pd.read_csv('orders.csv')
user_df = pd.read_csv('users.csv')
purchase_df = pd.read_csv('purchase_info.csv')
comments_df = pd.read_csv('comments.csv')
behavior_df = pd.read_csv('user_behavior.csv')
```
3. **合并表单**:
```python
user_purchase_df = pd.merge(order_df, purchase_df, on='user_id')
user_profile = pd.merge(user_df, user_purchase_df, on='user_id')
```
4. **探索购买行为数据**:
- 计算用户购买频率、总金额等指标
```python
user_profile['purchase_count'] = user_profile.groupby('user_id')['item_id'].transform('count')
total_spent = user_profile.groupby('user_id')['amount'].sum()
```
5. **创建可视化**:
- 可视化购买频率分布或消费金额分布
```python
fig, ax = plt.subplots(figsize=(10,6))
sns.histplot(total_spent, kde=True)
plt.show()
```
6. **寻找相似用户群体** (聚类算法):
```python
# 提取需要的特征,比如购买频率、平均评分等
features = ['purchase_count', 'average_rating']
kmeans = KMeans(n_clusters=5) # 根据业务需求调整簇数
clusters = kmeans.fit_predict(user_profile[features])
```
7. **分析商品喜好度**:
- 分析评论和购买记录,计算商品评分和购买频率
```python
item_ratings = comments_df.groupby('item_id')['rating'].mean()
popular_items = user_purchase_df['item_id'].value_counts().reset_index(name='frequency')
combined = pd.merge(item_ratings, popular_items, on='item_id')
```
8. **推荐系统** (假设使用Surprise库):
```python
reader = Reader(rating_scale=(1, 5)) # 确定评分范围
data = Dataset.load_from_df(purchase_df[['user_id', 'item_id']], reader)
algo = SVD() # 使用协同过滤算法
algo.fit(data.build_full_trainset())
# 推荐给用户
top_n = 10 # 推荐的商品数量
recommendations = algo.test(data.build_testset())
for user_id, (_, test_set) in enumerate(recommendations.all()):
print(f"User {user_id}:")
for item_id, (_, rating) in test_set.ur.items():
if rating != None:
print(f" {item_id}: {rating}")
```
阅读全文