3. 使用pytorch,从零开始实现多层感知机,其中数据集选择mnist
时间: 2024-10-08 22:27:29 浏览: 31
Pytorch实战之MNIST分类.zip
使用PyTorch从头开始实现一个多层感知机(Multilayer Perceptron, MLP)来处理MNIST数据集,需要按照以下步骤:
1. **导入库**:
首先,导入所需的库,如`torch`, `torch.nn`, `torch.optim`, 和 `torchvision.datasets`。
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
```
2. **预处理数据**:
加载并标准化MNIST数据集,将像素值归一化到0到1之间。
```python
transform = transforms.Compose([transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])
train_dataset = datasets.MNIST(root='./data', train=True, download=True, transform=transform)
test_dataset = datasets.MNIST(root='./data', train=False, download=True, transform=transform)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=64, shuffle=True)
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=64, shuffle=False)
```
3. **构建模型**:
设计一个多层神经网络,包括输入层、隐藏层和输出层。
```python
class MLP(nn.Module):
def __init__(self, input_dim, hidden_dim, output_dim):
super(MLP, self).__init__()
self.fc1 = nn.Linear(input_dim, hidden_dim)
self.relu = nn.ReLU()
self.fc2 = nn.Linear(hidden_dim, hidden_dim)
self.fc3 = nn.Linear(hidden_dim, output_dim)
def forward(self, x):
out = self.fc1(x)
out = self.relu(out)
out = self.fc2(out)
out = self.relu(out)
out = self.fc3(out)
return out
input_dim = 28 * 28 # MNIST图片大小
hidden_dim = 512
output_dim = 10 # 输出类别数
net = MLP(input_dim, hidden_dim, output_dim)
```
4. **设置损失函数和优化器**:
选择适当的损失函数(交叉熵),并配置优化器(例如Adam)。
```python
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(net.parameters(), lr=0.001)
```
5. **训练模型**:
在训练循环中,前向传播、反向传播以及更新权重。
```python
num_epochs = 10
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
net.to(device)
for epoch in range(num_epochs):
for images, labels in train_loader:
images, labels = images.to(device), labels.to(device)
optimizer.zero_grad()
outputs = net(images)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
```
6. **评估模型**:
测试模型在测试集上的性能。
```python
correct_count, total = 0, 0
with torch.no_grad():
for images, labels in test_loader:
images, labels = images.to(device), labels.to(device)
outputs = net(images)
_, predicted_labels = torch.max(outputs.data, 1)
total += labels.size(0)
correct_count += (predicted_labels == labels).sum().item()
accuracy = correct_count / total
print(f"Accuracy after training: {accuracy * 100:.2f}%")
```
阅读全文