皮尔逊相关系数的历史

时间: 2024-06-15 07:04:19 浏览: 112
皮尔逊相关系数是由卡尔·皮尔逊(Karl Pearson)于1896年提出的,他是一位英国统计学家和数学家。皮尔逊相关系数是用来衡量两个变量之间线性关系强度的统计量。 在提出皮尔逊相关系数之前,皮尔逊先后研究了许多与统计学相关的问题,包括概率论、回归分析和卡方检验等。他的研究为统计学的发展做出了重要贡献。 皮尔逊相关系数的计算方法是通过计算两个变量之间的协方差和各自标准差的乘积来得到的。它的取值范围在-1到1之间,其中1表示完全正相关,-1表示完全负相关,0表示没有线性相关性。 皮尔逊相关系数在统计学和数据分析中被广泛应用,可以用来研究变量之间的关系、预测未来趋势以及评估模型的拟合程度等。
相关问题

如何在推荐系统中应用皮尔逊相关系数进行用户相似度计算,并给出实现的步骤和代码示例?

在推荐系统中,皮尔逊相关系数常用于衡量用户或物品之间的相似度,尤其是在用户协同过滤算法中。为了精确计算用户的相似度,可以通过Python编程语言实现,这里推荐使用《机器学习实战:推荐系统案例解析与协同过滤方法》这一资源,它将指导你完成从理论到实践的过程。 参考资源链接:[机器学习实战:推荐系统案例解析与协同过滤方法](https://wenku.csdn.net/doc/7htda5bhcy?spm=1055.2569.3001.10343) 实现步骤如下: 1. 数据收集:首先需要收集用户的历史评分数据。 2. 数据预处理:处理缺失值和异常值,可能需要进行数据标准化。 3. 皮尔逊相关系数计算:使用皮尔逊相关系数公式,计算任意两个用户间的评分向量的相关性。 示例代码如下: ```python import numpy as np from scipy.stats import pearsonr # 假设user_ratings是用户评分矩阵,形状为(user_num, item_num) def calculate_pearson_similarity(user_ratings): Pearson_Coeff = np.zeros((user_ratings.shape[0], user_ratings.shape[0])) for i in range(user_ratings.shape[0]): for j in range(i + 1, user_ratings.shape[0]): Pearson_Coeff[i, j], _ = pearsonr(user_ratings[i, :], user_ratings[j, :]) Pearson_Coeff[j, i] = Pearson_Coeff[i, j] # 相关系数是对称的 return Pearson_Coeff # 使用函数计算用户间的皮尔逊相关系数矩阵 user_similarity = calculate_pearson_similarity(user_ratings) ``` 通过上述代码,我们可以得到一个用户相似度矩阵,其中的元素表示用户间的皮尔逊相关系数值。这个矩阵可以用于预测目标用户的兴趣,并给出相应的推荐。 通过深入学习《机器学习实战:推荐系统案例解析与协同过滤方法》,你将能够掌握如何在实际推荐系统中应用这些技术,并结合数据理解用户行为,进而设计出更加精准和个性化的推荐模型。 参考资源链接:[机器学习实战:推荐系统案例解析与协同过滤方法](https://wenku.csdn.net/doc/7htda5bhcy?spm=1055.2569.3001.10343)

Scala代码实现:3. 构建评分矩阵 将预处理后的数据集转换成评分矩阵,其中行表示用户,列表示物品,矩阵中的元素表示用户对物品的评分。 4. 对评分矩阵进行SVD分解 使用Scala的Breeze库或者Spark的MLlib库对评分矩阵进行SVD分解,得到用户和物品的隐含特征向量。 5. 计算用户和物品之间的相似度 根据用户和物品的隐含特征向量,可以计算用户和物品之间的相似度,例如使用余弦相似度或者皮尔逊相关系数。 6. 进行推荐 根据用户的历史评分和物品之间的相似度,可以进行推荐,例如使用基于邻域的推荐算法或者基于矩阵分解的推荐算法。

以下是Scala代码实现基于SVD分解的推荐系统的示例,包括构建评分矩阵、对评分矩阵进行SVD分解、计算用户和物品之间的相似度和进行推荐: ```scala import breeze.linalg.{DenseMatrix, DenseVector, sum} import org.apache.spark.ml.recommendation.ALS import org.apache.spark.sql.SparkSession val spark = SparkSession.builder() .appName("SVD Recommendation System") .master("local[*]") .getOrCreate() val ratings = spark.read.format("csv") .option("header", "true") .option("inferSchema", "true") .load("ratings.csv") val userIds = ratings.select("userId").distinct().rdd.map(r => r(0)).collect().sorted val movieIds = ratings.select("movieId").distinct().rdd.map(r => r(0)).collect().sorted val numUsers = userIds.length val numMovies = movieIds.length val userIndex = userIds.zipWithIndex.toMap val movieIndex = movieIds.zipWithIndex.toMap val ratingMatrix = DenseMatrix.zeros[Double](numUsers, numMovies) ratings.collect().foreach(r => { val userId = r.getInt(0) val movieId = r.getInt(1) val rating = r.getDouble(2) ratingMatrix(userIndex(userId), movieIndex(movieId)) = rating }) val (u, s, vt) = breeze.linalg.svd(ratingMatrix) val userFeatures = DenseMatrix.zeros[Double](numUsers, 10) val movieFeatures = DenseMatrix.zeros[Double](numMovies, 10) for (i <- 0 until 10) { userFeatures(::, i) := u(::, i) * math.sqrt(s(i)) movieFeatures(::, i) := vt(i, ::).t * math.sqrt(s(i)) } val userVectors = userFeatures.toArray.grouped(10).map(g => DenseVector(g)).toSeq val movieVectors = movieFeatures.toArray.grouped(10).map(g => DenseVector(g)).toSeq def cosineSimilarity(v1: DenseVector[Double], v2: DenseVector[Double]): Double = { (v1.dot(v2)) / (sum(v1 :* v1) * sum(v2 :* v2)) } def recommend(userId: Int, n: Int): Seq[(Int, Double)] = { val userVector = userVectors(userIndex(userId)) val scores = movieVectors.map(v => cosineSimilarity(userVector, v)) val sortedMovies = movieIds.zip(scores).sortBy(-_._2) sortedMovies.take(n) } recommend(1, 10).foreach(println) ``` 其中,我们首先读取评分数据,并将用户ID和物品ID映射到索引。然后,我们构建评分矩阵,并对评分矩阵进行SVD分解,得到用户和物品的隐含特征向量。接着,我们使用余弦相似度计算用户和物品之间的相似度,并为每个用户生成推荐结果。在此示例中,我们为用户1生成了10个推荐电影。
阅读全文

相关推荐

最新推荐

recommend-type

推荐(精准推送)系统全套方案加算法细节(使用皮尔逊算法)

首先,皮尔逊相关系数是一种统计方法,用于衡量两个变量之间的线性相关程度。在推荐系统中,它可以通过计算用户行为与其他用户或商品之间的相关性来预测用户可能的兴趣。例如,如果用户在翡翠王朝 App 中频繁浏览并...
recommend-type

不到40行代码用Python实现一个简单的推荐系统

4. 计算电影间相似性:使用皮尔逊相关系数或其他相似性度量方法,找出所有电影与用户A已观看电影的相似度。 5. 过滤低评分电影:由于评分次数过少的电影可能存在误差,因此需要删除评分样本不足的电影,以提高推荐...
recommend-type

YOLO算法-城市电杆数据集-496张图像带标签-电杆.zip

YOLO系列算法目标检测数据集,包含标签,可以直接训练模型和验证测试,数据集已经划分好,包含数据集配置文件data.yaml,适用yolov5,yolov8,yolov9,yolov7,yolov10,yolo11算法; 包含两种标签格:yolo格式(txt文件)和voc格式(xml文件),分别保存在两个文件夹中,文件名末尾是部分类别名称; yolo格式:<class> <x_center> <y_center> <width> <height>, 其中: <class> 是目标的类别索引(从0开始)。 <x_center> 和 <y_center> 是目标框中心点的x和y坐标,这些坐标是相对于图像宽度和高度的比例值,范围在0到1之间。 <width> 和 <height> 是目标框的宽度和高度,也是相对于图像宽度和高度的比例值; 【注】可以下拉页面,在资源详情处查看标签具体内容;
recommend-type

(177406840)JAVA图书管理系统毕业设计(源代码+论文).rar

JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代
recommend-type

Java毕业设计项目:校园二手交易网站开发指南

资源摘要信息:"Java是一种高性能、跨平台的面向对象编程语言,由Sun Microsystems(现为Oracle Corporation)的James Gosling等人在1995年推出。其设计理念是为了实现简单性、健壮性、可移植性、多线程以及动态性。Java的核心优势包括其跨平台特性,即“一次编写,到处运行”(Write Once, Run Anywhere),这得益于Java虚拟机(JVM)的存在,它提供了一个中介,使得Java程序能够在任何安装了相应JVM的设备上运行,无论操作系统如何。 Java是一种面向对象的编程语言,这意味着它支持面向对象编程(OOP)的三大特性:封装、继承和多态。封装使得代码模块化,提高了安全性;继承允许代码复用,简化了代码的复杂性;多态则增强了代码的灵活性和扩展性。 Java还具有内置的多线程支持能力,允许程序同时处理多个任务,这对于构建服务器端应用程序、网络应用程序等需要高并发处理能力的应用程序尤为重要。 自动内存管理,特别是垃圾回收机制,是Java的另一大特性。它自动回收不再使用的对象所占用的内存资源,这样程序员就无需手动管理内存,从而减轻了编程的负担,并减少了因内存泄漏而导致的错误和性能问题。 Java广泛应用于企业级应用开发、移动应用开发(尤其是Android平台)、大型系统开发等领域,并且有大量的开源库和框架支持,例如Spring、Hibernate、Struts等,这些都极大地提高了Java开发的效率和质量。 标签中提到的Java、毕业设计、课程设计和开发,意味着文件“毕业设计---社区(校园)二手交易网站.zip”中的内容可能涉及到Java语言的编程实践,可能是针对学生的课程设计或毕业设计项目,而开发则指出了这些内容的具体活动。 在文件名称列表中,“SJT-code”可能是指该压缩包中包含的是一个特定的项目代码,即社区(校园)二手交易网站的源代码。这类网站通常需要实现用户注册、登录、商品发布、浏览、交易、评价等功能,并且需要后端服务器支持,如数据库连接和事务处理等。考虑到Java的特性,网站的开发可能使用了Java Web技术栈,如Servlet、JSP、Spring Boot等,以及数据库技术,如MySQL或MongoDB等。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【MVC标准化:肌电信号处理的终极指南】:提升数据质量的10大关键步骤与工具

![MVC标准化](https://img-blog.csdn.net/20160221141956498) # 摘要 MVC标准化是肌电信号处理中确保数据质量的重要步骤,它对于提高测量结果的准确性和可重复性至关重要。本文首先介绍肌电信号的生理学原理和MVC标准化理论,阐述了数据质量的重要性及影响因素。随后,文章深入探讨了肌电信号预处理的各个环节,包括噪声识别与消除、信号放大与滤波技术、以及基线漂移的校正方法。在提升数据质量的关键步骤部分,本文详细描述了信号特征提取、MVC标准化的实施与评估,并讨论了数据质量评估与优化工具。最后,本文通过实验设计和案例分析,展示了MVC标准化在实践应用中的具
recommend-type

能否提供一个在R语言中执行Framingham数据集判别分析的详细和完整的代码示例?

当然可以。在R语言中,Framingham数据集是一个用于心血管疾病研究的经典数据集。以下是使用`ggfortify`包结合` factoextra`包进行判别分析的一个基本步骤: 首先,你需要安装所需的库,如果尚未安装,可以使用以下命令: ```r install.packages(c("ggfortify", "factoextra")) ``` 然后加载所需的数据集并做预处理。Framingham数据集通常存储在`MASS`包中,你可以通过下面的代码加载: ```r library(MASS) data(Framingham) ``` 接下来,我们假设你已经对数据进行了适当的清洗和转换
recommend-type

Blaseball Plus插件开发与构建教程

资源摘要信息:"Blaseball Plus" Blaseball Plus是一个与游戏Blaseball相关的扩展项目,该项目提供了一系列扩展和改进功能,以增强Blaseball游戏体验。在这个项目中,JavaScript被用作主要开发语言,通过在package.json文件中定义的脚本来完成构建任务。项目说明中提到了开发环境的要求,即在20.09版本上进行开发,并且提供了一个flake.nix文件来复制确切的构建环境。虽然Nix薄片是一项处于工作状态(WIP)的功能且尚未完全记录,但可能需要用户自行安装系统依赖项,其中列出了Node.js和纱(Yarn)的特定版本。 ### 知识点详细说明: #### 1. Blaseball游戏: Blaseball是一个虚构的棒球游戏,它在互联网社区中流行,其特点是独特的规则、随机事件和社区参与的元素。 #### 2. 扩展开发: Blaseball Plus是一个扩展,它可能是为在浏览器中运行的Blaseball游戏提供额外功能和改进的软件。扩展开发通常涉及编写额外的代码来增强现有软件的功能。 #### 3. JavaScript编程语言: JavaScript是一种高级的、解释执行的编程语言,被广泛用于网页和Web应用的客户端脚本编写,是开发Web扩展的关键技术之一。 #### 4. package.json文件: 这是Node.js项目的核心配置文件,用于声明项目的各种配置选项,包括项目名称、版本、依赖关系以及脚本命令等。 #### 5.构建脚本: 描述中提到的脚本,如`build:dev`、`build:prod:unsigned`和`build:prod:signed`,这些脚本用于自动化构建过程,可能包括编译、打包、签名等步骤。`yarn run`命令用于执行这些脚本。 #### 6. yarn包管理器: Yarn是一个快速、可靠和安全的依赖项管理工具,类似于npm(Node.js的包管理器)。它允许开发者和项目管理依赖项,通过简单的命令行界面可以轻松地安装和更新包。 #### 7. Node.js版本管理: 项目要求Node.js的具体版本,这里是14.9.0版本。管理特定的Node.js版本是重要的,因为在不同版本间可能会存在API变化或其他不兼容问题,这可能会影响扩展的构建和运行。 #### 8. 系统依赖项的安装: 文档提到可能需要用户手动安装系统依赖项,这在使用Nix薄片时尤其常见。Nix薄片(Nix flakes)是一个实验性的Nix特性,用于提供可复现的开发环境和构建设置。 #### 9. Web扩展的工件放置: 构建后的工件放置在`addon/web-ext-artifacts/`目录中,表明这可能是一个基于WebExtension的扩展项目。WebExtension是一种跨浏览器的扩展API,用于创建浏览器扩展。 #### 10. 扩展部署: 描述中提到了两种不同类型的构建版本:开发版(dev)和生产版(prod),其中生产版又分为未签名(unsigned)和已签名(signed)版本。这些不同的构建版本用于不同阶段的开发和发布。 通过这份文档,我们能够了解到Blaseball Plus项目的开发环境配置、构建脚本的使用、依赖管理工具的运用以及Web扩展的基本概念和部署流程。这些知识点对于理解JavaScript项目开发和扩展构建具有重要意义。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依