GCN python
时间: 2023-08-13 13:11:39 浏览: 120
交通流量预测(python).zip
GCN (Graph Convolutional Network) 是一种用于图数据的深度学习模型。下面是一个使用 Python 实现 GCN 的基本示例代码:
```python
import numpy as np
import scipy.sparse as sp
import torch
import torch.nn as nn
import torch.nn.functional as F
class GraphConvolution(nn.Module):
def __init__(self, input_dim, output_dim):
super(GraphConvolution, self).__init__()
self.weight = nn.Parameter(torch.FloatTensor(input_dim, output_dim))
self.bias = nn.Parameter(torch.FloatTensor(output_dim))
def forward(self, input, adj):
support = torch.matmul(input, self.weight)
output = torch.matmul(adj, support)
output = output + self.bias
return output
class GCN(nn.Module):
def __init__(self, input_dim, hidden_dim, output_dim):
super(GCN, self).__init__()
self.gc1 = GraphConvolution(input_dim, hidden_dim)
self.gc2 = GraphConvolution(hidden_dim, output_dim)
def forward(self, input, adj):
hidden = F.relu(self.gc1(input, adj))
output = self.gc2(hidden, adj)
return output
# 构建图邻接矩阵
def normalize_adjacency(adj):
adj = sp.coo_matrix(adj)
rowsum = np.array(adj.sum(1))
d_inv_sqrt = np.power(rowsum, -0.5).flatten()
d_inv_sqrt[np.isinf(d_inv_sqrt)] = 0.0
d_mat_inv_sqrt = sp.diags(d_inv_sqrt)
normalized_adj = adj.dot(d_mat_inv_sqrt).transpose().dot(d_mat_inv_sqrt).tocoo()
return normalized_adj
# 转换为稀疏张量
def sparse_to_tensor(sparse_mx):
sparse_mx = sparse_mx.tocoo().astype(np.float32)
indices = torch.from_numpy(np.vstack((sparse_mx.row, sparse_mx.col)).astype(np.int64))
values = torch.from_numpy(sparse_mx.data)
shape = torch.Size(sparse_mx.shape)
tensor = torch.sparse.FloatTensor(indices, values, shape)
return tensor
# 构建模型和数据
adjacency = [[0, 1, 0], [1, 0, 1], [0, 1, 0]] # 图的邻接矩阵
features = [[1, 0], [0, 1], [1, 1]] # 图的特征矩阵
adjacency = normalize_adjacency(adjacency)
adjacency_tensor = sparse_to_tensor(adjacency)
features_tensor = torch.FloatTensor(features)
input_dim = features_tensor.shape[1]
hidden_dim = 16
output_dim = 2
model = GCN(input_dim, hidden_dim, output_dim)
# 使用模型进行前向传播
output = model(features_tensor, adjacency_tensor)
```
这是一个简化的 GCN 实现,包含了图卷积层 `GraphConvolution` 和 GCN 模型 `GCN`。代码中的 `adjacency` 是图的邻接矩阵,`features` 是节点的特征矩阵。模型的前向传播过程通过计算图卷积层的输出得到。
注意,这只是一个基本示例,实际应用中可能需要根据具体情况进行调整和扩展。另外,还需要安装相应的依赖库,例如 NumPy、SciPy 和 PyTorch。
阅读全文