DRSN34网络结构实现pytorch
时间: 2024-01-18 12:03:39 浏览: 88
resnet1d:一维(1D)信号时间序列数据上的多个SOTA骨干深度神经网络(例如ResNet,ResNeXt,RegNet)的PyTorch实现
DRSN34网络结构是Deep Residual Shrinkage Networks(DRSN)的一个变种,用于故障诊断。下面是使用PyTorch实现DRSN34网络结构的示例代码:
```python
import torch
import torch.nn as nn
class DRSN34(nn.Module):
def __init__(self, num_classes=10):
super(DRSN34, self).__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(64, 64, 3)
self.layer2 = self._make_layer(64, 128, 4, stride=2)
self.layer3 = self._make_layer(128, 256, 6, stride=2)
self.layer4 = self._make_layer(256, 512, 3, stride=2)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(512, num_classes)
def _make_layer(self, in_channels, out_channels, blocks, stride=1):
layers = []
layers.append(nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False))
layers.append(nn.BatchNorm2d(out_channels))
layers.append(self.relu)
for _ in range(1, blocks):
layers.append(nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False))
layers.append(nn.BatchNorm2d(out_channels))
layers.append(self.relu)
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = torch.flatten(x, 1)
x = self.fc(x)
return x
# 创建DRSN34网络实例
model = DRSN34()
```
请注意,上述代码只是DRSN34网络结构的一个示例实现,具体的训练和使用方法可能需要根据具体的任务和数据进行调整。
阅读全文