选存储结构,输入含n个顶点(用字符表示顶点)和e 条边的图g

时间: 2023-12-05 08:01:45 浏览: 95
对于含有n个顶点和e条边的图g,我们可以选择不同的存储结构来表示这个图。 一种常用的存储结构是邻接矩阵。邻接矩阵是一个n*n的矩阵,其中的每个元素表示图中两个顶点之间是否存在一条边。如果元素的值为1,则表示存在一条边;如果元素的值为0,则表示不存在一条边。通过这种方式,我们可以快速地判断任意两个顶点之间是否存在边,但是对于稀疏图来说会占用较多的空间。 另一种存储结构是邻接表。邻接表是由n个链表组成的数组,每个链表存储与该顶点相邻的顶点列表。通过这种方式,我们可以方便地遍历任意一个顶点的所有邻接顶点,但是判断任意两个顶点之间是否存在边的时间复杂度较高。 除了邻接矩阵和邻接表之外,我们还可以使用其他存储结构,如邻接多重表、边集数组等。邻接多重表在有向图和无向图的情况下的存储方式不同,一种常用的方式是使用双向链表来存储顶点和边。 在选择存储结构时,我们需要考虑图的规模、图的密度以及对各种操作的需求。如果图较小且稠密,邻接矩阵是一个不错的选择;如果图较大且稀疏,邻接表可能更为合适。此外,我们还可以根据具体的应用场景来选择最适合的存储结构。
相关问题

图的基本操作与实现,要求用邻接表存储结构,实现对图11-3所示的有向带权网络G的操作。 ⑴ 输入含n(1≤n≤100)个顶点(用字符表示顶点)和e条边; ⑵ 求每个顶点的出度和入度,输出结果; ⑶ 指定任意顶点x为初始顶点,对图G作DFS遍历,输出DFS顶点序列; ⑷ 指定任意顶点x为初始顶点,对图G作BFS遍历,输出BFS顶点序列; ⑸ 输入顶点x,查找图G:若存在含x的顶点,则删除该结点及与之相关联的边,并作DFS遍历;否则输出信息“无x”; ⑹ 判断图G是否是连通图,输出信息“YES”/“NO”; ⑺ 根据图G的邻接表创建图G的邻接矩阵,即复制图G。 ⑻ 找出该图的一棵最小生成树。

邻接表存储结构定义: ```c typedef char VertexType; // 顶点类型 typedef int EdgeType; // 边权值类型 // 边表结点 typedef struct EdgeNode { int adjvex; // 邻接点编号 EdgeType weight; // 边权值 struct EdgeNode *next; // 指向下一个邻接点 } EdgeNode; // 顶点表结点 typedef struct VertexNode { VertexType data; // 顶点数据 EdgeNode *firstEdge; // 指向第一个邻接点 } VertexNode, AdjList[MAXVEX]; // 邻接表存储结构 typedef struct { AdjList adjList; // 邻接表 int numVertexes, numEdges; // 顶点数和边数 } GraphAdjList; ``` 辅助函数: ```c // 返回顶点在邻接表中的位置 int LocateVex(GraphAdjList G, VertexType v) { for (int i = 0; i < G.numVertexes; i++) { if (G.adjList[i].data == v) { return i; } } return -1; } // 深度优先搜索遍历 void DFS(GraphAdjList G, int i, bool visited[]) { visited[i] = true; printf("%c", G.adjList[i].data); EdgeNode *p = G.adjList[i].firstEdge; while (p) { if (!visited[p->adjvex]) { DFS(G, p->adjvex, visited); } p = p->next; } } // 广度优先搜索遍历 void BFS(GraphAdjList G, int i, bool visited[]) { int queue[MAXVEX], front = 0, rear = 0; printf("%c", G.adjList[i].data); visited[i] = true; queue[rear++] = i; while (front != rear) { int j = queue[front++]; EdgeNode *p = G.adjList[j].firstEdge; while (p) { if (!visited[p->adjvex]) { printf("%c", G.adjList[p->adjvex].data); visited[p->adjvex] = true; queue[rear++] = p->adjvex; } p = p->next; } } } // 删除结点及其相关联的边 void DeleteVex(GraphAdjList *G, VertexType v) { int i = LocateVex(*G, v); if (i == -1) { printf("无%c\n", v); return; } EdgeNode *p = G->adjList[i].firstEdge; while (p) { int j = p->adjvex; EdgeNode *q = G->adjList[j].firstEdge, *r = NULL; while (q) { if (q->adjvex == i) { if (r == NULL) { G->adjList[j].firstEdge = q->next; } else { r->next = q->next; } free(q); G->numEdges--; break; } r = q; q = q->next; } p = p->next; } G->numVertexes--; for (int j = i; j < G->numVertexes; j++) { G->adjList[j] = G->adjList[j+1]; } for (int j = 0; j < G->numVertexes; j++) { EdgeNode *p = G->adjList[j].firstEdge; while (p) { if (p->adjvex > i) { p->adjvex--; } p = p->next; } } } // 连通性检查 bool DFS2(GraphAdjList G, int i, bool visited[]) { visited[i] = true; EdgeNode *p = G.adjList[i].firstEdge; while (p) { if (!visited[p->adjvex]) { DFS2(G, p->adjvex, visited); } p = p->next; } return true; } bool IsConnected(GraphAdjList G) { bool visited[MAXVEX] = { false }; DFS2(G, 0, visited); for (int i = 0; i < G.numVertexes; i++) { if (!visited[i]) { return false; } } return true; } // 边的最小堆 typedef struct { int u, v; // 边的两个顶点 EdgeType w; // 边的权值 } Edge; typedef struct { Edge data[MAXEDGE]; int size; } MinHeap; void Insert(MinHeap *H, Edge e) { H->data[++H->size] = e; int i = H->size; while (i > 1 && H->data[i].w < H->data[i/2].w) { Edge tmp = H->data[i]; H->data[i] = H->data[i/2]; H->data[i/2] = tmp; i /= 2; } } Edge Delete(MinHeap *H) { Edge ret = H->data[1]; H->data[1] = H->data[H->size--]; int i = 1; while (i*2 <= H->size) { int child = i*2; if (child < H->size && H->data[child+1].w < H->data[child].w) { child++; } if (H->data[child].w < H->data[i].w) { Edge tmp = H->data[child]; H->data[child] = H->data[i]; H->data[i] = tmp; i = child; } else { break; } } return ret; } ``` 操作实现: ⑴ 输入含n(1≤n≤100)个顶点(用字符表示顶点)和e条边; ```c void CreateGraph(GraphAdjList *G) { printf("输入顶点数和边数:"); scanf("%d%d", &G->numVertexes, &G->numEdges); getchar(); // 读取多余的换行符 printf("输入顶点:"); for (int i = 0; i < G->numVertexes; i++) { scanf("%c", &G->adjList[i].data); G->adjList[i].firstEdge = NULL; } getchar(); // 读取多余的换行符 printf("输入边(<vi,vj,w>):"); for (int k = 0; k < G->numEdges; k++) { VertexType vi, vj; EdgeType w; scanf("<%c,%c,%d>", &vi, &vj, &w); getchar(); // 读取多余的换行符 int i = LocateVex(*G, vi), j = LocateVex(*G, vj); EdgeNode *e = (EdgeNode *)malloc(sizeof(EdgeNode)); e->adjvex = j; e->weight = w; e->next = G->adjList[i].firstEdge; G->adjList[i].firstEdge = e; } } ``` ⑵ 求每个顶点的出度和入度,输出结果; ```c void PrintInAndOutDegree(GraphAdjList G) { int inDegree[MAXVEX] = { 0 }, outDegree[MAXVEX] = { 0 }; for (int i = 0; i < G.numVertexes; i++) { EdgeNode *p = G.adjList[i].firstEdge; while (p) { outDegree[i]++; inDegree[p->adjvex]++; p = p->next; } } printf("顶点 出度 入度\n"); for (int i = 0; i < G.numVertexes; i++) { printf("%c %d %d\n", G.adjList[i].data, outDegree[i], inDegree[i]); } } ``` ⑶ 指定任意顶点x为初始顶点,对图G作DFS遍历,输出DFS顶点序列; ```c void DFSTraverse(GraphAdjList G, VertexType v) { bool visited[MAXVEX] = { false }; int i = LocateVex(G, v); DFS(G, i, visited); } ``` ⑷ 指定任意顶点x为初始顶点,对图G作BFS遍历,输出BFS顶点序列; ```c void BFSTraverse(GraphAdjList G, VertexType v) { bool visited[MAXVEX] = { false }; int i = LocateVex(G, v); BFS(G, i, visited); } ``` ⑸ 输入顶点x,查找图G:若存在含x的顶点,则删除该结点及与之相关联的边,并作DFS遍历;否则输出信息“无x”; ```c void DeleteVexAndDFS(GraphAdjList *G, VertexType v) { DeleteVex(G, v); bool visited[MAXVEX] = { false }; if (LocateVex(*G, v) != -1) { printf("DFS遍历序列:"); int i = 0; while (visited[i]) i++; DFS(*G, i, visited); } } ``` ⑹ 判断图G是否是连通图,输出信息“YES”/“NO”; ```c void PrintConnected(GraphAdjList G) { if (IsConnected(G)) { printf("YES\n"); } else { printf("NO\n"); } } ``` ⑺ 根据图G的邻接表创建图G的邻接矩阵,即复制图G。 ```c void CreateMGraph(GraphAdjList G, EdgeType (*matrix)[MAXVEX]) { for (int i = 0; i < G.numVertexes; i++) { for (int j = 0; j < G.numVertexes; j++) { matrix[i][j] = INFINITY; } EdgeNode *p = G.adjList[i].firstEdge; while (p) { matrix[i][p->adjvex] = p->weight; p = p->next; } } } ``` ⑻ 找出该图的一棵最小生成树。 ```c void MiniSpanTree_Kruskal(GraphAdjList G) { Edge edges[MAXEDGE]; int k = 0; for (int i = 0; i < G.numVertexes; i++) { EdgeNode *p = G.adjList[i].firstEdge; while (p) { if (i < p->adjvex) { edges[k].u = i; edges[k].v = p->adjvex; edges[k].w = p->weight; k++; } p = p->next; } } MinHeap H = { 0 }; for (int i = 0; i < k; i++) { Insert(&H, edges[i]); } int parent[MAXVEX]; for (int i = 0; i < G.numVertexes; i++) { parent[i] = i; } int count = 0; while (count < G.numVertexes-1 && H.size > 0) { Edge e = Delete(&H); int u = e.u, v = e.v; while (parent[u] != u) { u = parent[u]; } while (parent[v] != v) { v = parent[v]; } if (u != v) { printf("%c-%c ", G.adjList[e.u].data, G.adjList[e.v].data); parent[v] = u; count++; } } } ``` 完整代码:

使用c语言编写代码:要求建立一个无向图,采用邻接矩阵做为存储结构。输入信息为:第一行给出图的顶点数n和边数e。第二行给出n个字符,表示n个顶点的数据元素的值。后面是e行,给出每一条边的两个顶点的值(顶点之间无空格)。 输出每个顶点的值以及各顶点的邻接点的值。

下面是一个使用C语言编写的建立无向图,并采用邻接矩阵做为存储结构的示例代码,可以满足您的要求: ```c #include <stdio.h> #include <stdlib.h> #include <string.h> #define MAX_VERTEX_NUM 100 // 最大顶点数 typedef struct { char data; // 顶点的数据元素的值 } VertexType; // 顶点类型 typedef struct { int edges[MAX_VERTEX_NUM][MAX_VERTEX_NUM]; // 邻接矩阵,存储边 int n, e; // 顶点数和边数 VertexType vertex[MAX_VERTEX_NUM]; // 存储顶点的数据元素的值 } MGraph; // 图的邻接矩阵存储类型 void CreateMGraph(MGraph *G) { printf("请输入顶点数和边数:"); scanf("%d %d", &(G->n), &(G->e)); getchar(); // 读取回车符 printf("请输入%d个顶点的数据元素的值:", G->n); for(int i=0; i<G->n; i++) { scanf("%c", &(G->vertex[i].data)); getchar(); // 读取回车符 } // 初始化邻接矩阵,所有元素都为0 for(int i=0; i<G->n; i++) { for(int j=0; j<G->n; j++) { G->edges[i][j] = 0; } } // 添加边,将相邻节点之间的元素标记为1 printf("请依次输入每条边的两个顶点的值:\n"); char v1, v2; int i, j; for(int k=0; k<G->e; k++) { scanf("%c%c", &v1, &v2); getchar(); // 读取回车符 // 查找v1和v2在vertex数组中的位置 for(i=0; i<G->n; i++) { if(v1 == G->vertex[i].data) { break; } } for(j=0; j<G->n; j++) { if(v2 == G->vertex[j].data) { break; } } G->edges[i][j] = 1; G->edges[j][i] = 1; // 无向图,矩阵对称 } } void PrintMGraph(MGraph G) { printf("图的邻接矩阵为:\n"); for(int i=0; i<G.n; i++) { printf("%c: ", G.vertex[i].data); // 输出顶点的数据元素的值 for(int j=0; j<G.n; j++) { if(G.edges[i][j] == 1) { printf("%c ", G.vertex[j].data); // 输出邻接点的数据元素的值 } } printf("\n"); } } int main() { MGraph G; CreateMGraph(&G); PrintMGraph(G); return 0; } ``` 在上面的代码中,我们首先定义了一个MGraph类型的结构体,里面包含了邻接矩阵、顶点数、边数和顶点的数据元素的值等成员。然后,我们定义了CreateMGraph和PrintMGraph两个函数,分别用于创建图和输出图的邻接矩阵。在CreateMGraph函数中,我们先读取顶点数和边数,并读取每个顶点的数据元素的值。然后,我们初始化邻接矩阵,将所有元素都赋值为0。接着,我们逐个添加边,将相邻节点之间的元素标记为1,以便构建无向图。在PrintMGraph函数中,我们首先输出每个顶点的数据元素的值,然后输出该顶点的邻接点的数据元素的值。 最后,我们在main函数中调用CreateMGraph和PrintMGraph函数,以便创建图并输出邻接矩阵。
阅读全文

相关推荐

最新推荐

recommend-type

假设图中数据元素类型是字符型,请采用邻接矩阵或邻接表实现图的以下基本操作: (1)构造图(包括有向图、有向网、无向图、无向网); (2)根据深度优先遍历图。

Mgraph结构体用来表示整个图,包括顶点向量、邻接矩阵和图的顶点数和边数。 在程序设计中,我们可能会有以下函数: - `Input()`:用于录入边的权值和其他信息。 - `LocateVex()`:查找指定顶点在图中的位置。 - `...
recommend-type

精细金属掩模板(FMM)行业研究报告 显示技术核心部件FMM材料产业分析与市场应用

精细金属掩模板(FMM)作为OLED蒸镀工艺中的核心消耗部件,负责沉积RGB有机物质形成像素。材料由Frame、Cover等五部分组成,需满足特定热膨胀性能。制作工艺包括蚀刻、电铸等,影响FMM性能。适用于显示技术研究人员、产业分析师,旨在提供FMM材料技术发展、市场规模及产业链结构的深入解析。
recommend-type

【创新未发表】斑马算法ZOA-Kmean-Transformer-LSTM负荷预测Matlab源码 9515期.zip

CSDN海神之光上传的全部代码均可运行,亲测可用,直接替换数据即可,适合小白; 1、代码压缩包内容 主函数:Main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2024b;若运行有误,根据提示修改;若不会,可私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开除Main.m的其他m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描博主博客文章底部QQ名片; 4.1 CSDN博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作 智能优化算法优化Kmean-Transformer-LSTM负荷预测系列程序定制或科研合作方向: 4.4.1 遗传算法GA/蚁群算法ACO优化Kmean-Transformer-LSTM负荷预测 4.4.2 粒子群算法PSO/蛙跳算法SFLA优化Kmean-Transformer-LSTM负荷预测 4.4.3 灰狼算法GWO/狼群算法WPA优化Kmean-Transformer-LSTM负荷预测 4.4.4 鲸鱼算法WOA/麻雀算法SSA优化Kmean-Transformer-LSTM负荷预测 4.4.5 萤火虫算法FA/差分算法DE优化Kmean-Transformer-LSTM负荷预测 4.4.6 其他优化算法优化Kmean-Transformer-LSTM负荷预测
recommend-type

j link 修复问题套件

j link 修复问题套件
recommend-type

C#实现modbusRTU(实现了01 3 05 06 16等5个功能码)

资源包括 modbuspoll 虚拟串口软件vspd modsim32和modscan32 以及C#版的modbus程序 打开modsim32连接串口2 打开程序连接串口3 即可和Mdosim32进行读写通信。 本代码为C# winform程序,实现了01 03 05 06 16总共五个功能码的功能。 备注: 01功能码:读线圈开关。 03功能码: 读寄存器值。 05功能码:写线圈开关。 06功能码:写单个寄存器值。 16功能码:写多个寄存器值。
recommend-type

Angular实现MarcHayek简历展示应用教程

资源摘要信息:"MarcHayek-CV:我的简历的Angular应用" Angular 应用是一个基于Angular框架开发的前端应用程序。Angular是一个由谷歌(Google)维护和开发的开源前端框架,它使用TypeScript作为主要编程语言,并且是单页面应用程序(SPA)的优秀解决方案。该应用不仅展示了Marc Hayek的个人简历,而且还介绍了如何在本地环境中设置和配置该Angular项目。 知识点详细说明: 1. Angular 应用程序设置: - Angular 应用程序通常依赖于Node.js运行环境,因此首先需要全局安装Node.js包管理器npm。 - 在本案例中,通过npm安装了两个开发工具:bower和gulp。bower是一个前端包管理器,用于管理项目依赖,而gulp则是一个自动化构建工具,用于处理如压缩、编译、单元测试等任务。 2. 本地环境安装步骤: - 安装命令`npm install -g bower`和`npm install --global gulp`用来全局安装这两个工具。 - 使用git命令克隆远程仓库到本地服务器。支持使用SSH方式(`***:marc-hayek/MarcHayek-CV.git`)和HTTPS方式(需要替换为具体用户名,如`git clone ***`)。 3. 配置流程: - 在server文件夹中的config.json文件里,需要添加用户的电子邮件和密码,以便该应用能够通过内置的联系功能发送信息给Marc Hayek。 - 如果想要在本地服务器上运行该应用程序,则需要根据不同的环境配置(开发环境或生产环境)修改config.json文件中的“baseURL”选项。具体而言,开发环境下通常设置为“../build”,生产环境下设置为“../bin”。 4. 使用的技术栈: - JavaScript:虽然没有直接提到,但是由于Angular框架主要是用JavaScript来编写的,因此这是必须理解的核心技术之一。 - TypeScript:Angular使用TypeScript作为开发语言,它是JavaScript的一个超集,添加了静态类型检查等功能。 - Node.js和npm:用于运行JavaScript代码以及管理JavaScript项目的依赖。 - Git:版本控制系统,用于代码的版本管理及协作开发。 5. 关于项目结构: - 该应用的项目文件夹结构可能遵循Angular CLI的典型结构,包含了如下目录:app(存放应用组件)、assets(存放静态资源如图片、样式表等)、environments(存放环境配置文件)、server(存放服务器配置文件如上文的config.json)等。 6. 开发和构建流程: - 开发时,可能会使用Angular CLI来快速生成组件、服务等,并利用热重载等特性进行实时开发。 - 构建应用时,通过gulp等构建工具可以进行代码压缩、ES6转译、单元测试等自动化任务,以确保代码的质量和性能优化。 7. 部署: - 项目最终需要部署到服务器上,配置文件中的“baseURL”选项指明了服务器上的资源基础路径。 8. 关于Git仓库: - 压缩包子文件的名称为MarcHayek-CV-master,表明这是一个使用Git版本控制的仓库,且存在一个名为master的分支,这通常是项目的主分支。 以上知识点围绕Angular应用“MarcHayek-CV:我的简历”的创建、配置、开发、构建及部署流程进行了详细说明,涉及了前端开发中常见的工具、技术及工作流。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

深入剖析:内存溢出背后的原因、预防及应急策略(专家版)

![深入剖析:内存溢出背后的原因、预防及应急策略(专家版)](https://d8it4huxumps7.cloudfront.net/uploads/images/65e82a01a4196_dangling_pointer_in_c_2.jpg?d=2000x2000) 参考资源链接:[Net 内存溢出(System.OutOfMemoryException)的常见情况和处理方式总结](https://wenku.csdn.net/doc/6412b784be7fbd1778d4a95f?spm=1055.2635.3001.10343) # 1. 内存溢出的概念及影响 内存溢出,又称
recommend-type

Java中如何对年月日时分秒的日期字符串作如下处理:如何日期分钟介于两个相连的半点之间,就将分钟数调整为前半点

在Java中,你可以使用`java.time`包中的类来处理日期和时间,包括格式化和调整。下面是一个示例,展示了如何根据给定的日期字符串(假设格式为"yyyy-MM-dd HH:mm:ss")进行这样的处理: ```java import java.text.SimpleDateFormat; import java.time.LocalDateTime; import java.time.ZoneId; import java.time.ZonedDateTime; public class Main { public static void main(String[] args
recommend-type

Crossbow Spot最新更新 - 获取Chrome扩展新闻

资源摘要信息:"Crossbow Spot - Latest News Update-crx插件" 该信息是关于一款特定的Google Chrome浏览器扩展程序,名为"Crossbow Spot - Latest News Update"。此插件的目的是帮助用户第一时间获取最新的Crossbow Spot相关信息,它作为一个RSS阅读器,自动聚合并展示Crossbow Spot的最新新闻内容。 从描述中可以提取以下关键知识点: 1. 功能概述: - 扩展程序能让用户领先一步了解Crossbow Spot的最新消息,提供实时更新。 - 它支持自动更新功能,用户不必手动点击即可刷新获取最新资讯。 - 用户界面设计灵活,具有美观的新闻小部件,使得信息的展现既实用又吸引人。 2. 用户体验: - 桌面通知功能,通过Chrome的新通知中心托盘进行实时推送,确保用户不会错过任何重要新闻。 - 提供一个便捷的方式来保持与Crossbow Spot最新动态的同步。 3. 语言支持: - 该插件目前仅支持英语,但开发者已经计划在未来的版本中添加对其他语言的支持。 4. 技术实现: - 此扩展程序是基于RSS Feed实现的,即从Crossbow Spot的RSS源中提取最新新闻。 - 扩展程序利用了Chrome的通知API,以及RSS Feed处理机制来实现新闻的即时推送和展示。 5. 版权与免责声明: - 所有的新闻内容都是通过RSS Feed聚合而来,扩展程序本身不提供原创内容。 - 用户在使用插件时应遵守相关的版权和隐私政策。 6. 安装与使用: - 用户需要从Chrome网上应用店下载.crx格式的插件文件,即Crossbow_Spot_-_Latest_News_Update.crx。 - 安装后,插件会自动运行,并且用户可以对其进行配置以满足个人偏好。 从以上信息可以看出,该扩展程序为那些对Crossbow Spot感兴趣或需要密切跟进其更新的用户提供了一个便捷的解决方案,通过集成RSS源和Chrome通知机制,使得信息获取变得更加高效和及时。这对于需要实时更新信息的用户而言,具有一定的实用价值。同时,插件的未来发展计划中包括了多语言支持,这将使得更多的用户能够使用并从中受益。