最小二乘法进行电机参数辩识的matlab代码
时间: 2024-09-30 18:11:47 浏览: 29
永磁同步电机RLS最小二乘法参数辨识
5星 · 资源好评率100%
最小二乘法是一种常用的数值方法,用于拟合数据和估计模型参数,特别是在电机参数辨识中非常常见。在MATLAB中,可以使用`lsqcurvefit`函数来进行非线性最小二乘拟合。这里是一个简单的示例代码片段,假设我们有电机的电压和电流测量数据,目标是找出励磁电阻、电枢电阻和漏电抗等参数:
```matlab
% 假设数据已存储在vectors(电压向量)和i_vectors(电流向量)中
v = vectors; % 电压测量值
i = i_vectors; % 电流测量值
% 定义电机模型函数(通常采用电压方程,如:v = Rf*i + Ra*i^2 + Xs*i)
model_func = @(params, v) params(1)*i + params(2)*i.^2 + params(3)*i; % 励磁电阻、电枢电阻和漏电抗
% 初始参数猜测(假设值)
initial_params = [0.5, 0.1, 0.05]; % Rf, Ra, Xs
% 使用lsqcurvefit求解
optimized_params = lsqcurvefit(model_func, initial_params, v, i);
% 输出优化后的参数
disp(['励磁电阻:', num2str(optimized_params(1))])
disp(['电枢电阻:', num2str(optimized_params(2))])
disp(['漏电抗:', num2str(optimized_params(3))])
% 可视化拟合结果
plot(v, i, 'o', 'MarkerSize', 8); % 数据点
hold on;
plot(v, model_func(optimized_params, v), '-r'); % 拟合曲线
legend('测量数据', '拟合曲线');
xlabel('电压 (V)');
ylabel('电流 (A)');
title('电机参数辨识');
阅读全文