openmv 三角形识别
时间: 2023-07-28 21:09:13 浏览: 193
您好!对于在OpenMV上进行三角形识别,您可以采取以下步骤:
1. 导入所需的库和模块:
```python
import sensor
import image
import time
import math
```
2. 初始化相机:
```python
sensor.reset()
sensor.set_pixformat(sensor.RGB565)
sensor.set_framesize(sensor.QQVGA)
sensor.skip_frames(10)
sensor.set_auto_gain(False)
sensor.set_auto_whitebal(False)
```
3. 创建一个图像对象并进行颜色追踪:
```python
img = sensor.snapshot()
blobs = img.find_blobs([color1, color2, ...], pixels_threshold=200, area_threshold=200)
```
4. 遍历检测到的blob,使用边缘检测函数寻找三角形:
```python
for blob in blobs:
img.binary([(blob.x(), blob.y(), blob.w(), blob.h())])
lines = img.find_lines(threshold=1000, theta_margin=25, rho_margin=25)
for line in lines:
img.draw_line(line.x1(), line.y1(), line.x2(), line.y2())
if len(lines) == 3:
# 这个blob可能是一个三角形
# 执行您想要的操作
...
```
5. 最后,您可以根据需要对图像进行显示或保存:
```python
img.draw_rectangle(blob.rect())
img.save("result.jpg")
```
请注意,上述代码仅提供了一个简单的示例,您可能需要根据具体需求进行修改和调整。同时,您还需要根据实际情况调整颜色追踪和边缘检测的参数,以获得更好的识别效果。
希望对您有所帮助!如有任何进一步的问题,请随时提问。
阅读全文
相关推荐


















