读取json文件student.json,然后在spark-shell中编写弱类型的UDAF计算学生年龄的平均值。数据格式为{"id":3,"name":"Rongcheng","gender":"M","age":26}
时间: 2024-06-03 09:05:40 浏览: 85
Java读文件,可分析数据并计算平均值
3星 · 编辑精心推荐
读取json文件可以使用Spark中提供的json方法,示例代码如下:
```
val df = spark.read.json("student.json")
df.show()
```
然后,我们可以编写弱类型的UDAF函数来计算学生年龄的平均值,示例代码如下:
```
import org.apache.spark.sql.expressions.MutableAggregationBuffer
import org.apache.spark.sql.expressions.UserDefinedAggregateFunction
import org.apache.spark.sql.types._
import org.apache.spark.sql.Row
class AvgAge extends UserDefinedAggregateFunction {
// 定义输入参数的数据类型
def inputSchema: StructType = StructType(StructField("age", IntegerType) :: Nil)
// 定义缓冲区数据类型
def bufferSchema: StructType = StructType(StructField("total", LongType) :: StructField("count", LongType) :: Nil)
// 定义输出数据类型
def dataType: DataType = DoubleType
// 定义是否是幂等的函数
def deterministic: Boolean = true
// 初始化缓冲区,将初始值赋给缓冲区
def initialize(buffer: MutableAggregationBuffer): Unit = {
buffer(0) = 0L
buffer(1) = 0L
}
// 更新缓冲区,将新的值加入到缓冲区中
def update(buffer: MutableAggregationBuffer, input: Row): Unit = {
if (!input.isNullAt(0)) {
buffer(0) = buffer.getLong(0) + input.getInt(0)
buffer(1) = buffer.getLong(1) + 1L
}
}
// 合并缓冲区,将两个缓冲区合并成一个缓冲区
def merge(buffer1: MutableAggregationBuffer, buffer2: Row): Unit = {
buffer1(0) = buffer1.getLong(0) + buffer2.getLong(0)
buffer1(1) = buffer1.getLong(1) + buffer2.getLong(1)
}
// 计算最终结果,返回平均值
def evaluate(buffer: Row): Any = {
if (buffer.getLong(1) == 0L) {
null
} else {
buffer.getLong(0).toDouble / buffer.getLong(1)
}
}
}
// 注册UDAF函数
val avgAge = new AvgAge()
spark.udf.register("avgAge", avgAge)
// 使用UDAF函数计算年龄平均值
df.selectExpr("avgAge(age)").show()
```
阅读全文