input_data = layers.Input(shape=(200, ), name = 'input_layer') word_2_vec = layers.Embedding(max_words, embeddings_dim, input_length=maxlen)(input_data) lstm_output = layers.Bidirectional(LSTM(200, input_shape=(200, 100), return_sequences=True), merge_mode='ave')(word_2_vec) feature_1 = layers.Conv1D(filters=100, kernel_size=3)(lstm_output) feature_1 = layers.MaxPool1D(pool_size=98)(feature_1) feature_2 = layers.Conv1D(filters=100, kernel_size=4)(lstm_output) feature_2 = layers.MaxPool1D(pool_size=97)(feature_2) feature_3 = layers.Conv1D(filters=100, kernel_size=5)(lstm_output) feature_3 = layers.MaxPool1D(pool_size=96)(feature_3) x = layers.concatenate([feature_1, feature_2, feature_3], axis=2) x = Self_Attention(300)(x) x = layers.Dense(64, activation='relu', input_shape=(300, ))(x) x = layers.Dense(16, activation='relu')(x) priority_pred = layers.Dense(1, name="priority", activation='softmax')(x) model = keras.Model(inputs = [input_data], outputs = [priority_pred]) #将预训练的词嵌入加入到Embedding层中# model.layers[1].set_weights([embeddings_matrix]) model.layers[1].trainable = False #训练与评估# model.compile(optimizer='rmsprop', loss='binary_crossentropy', metrics=['acc', keras.metrics.Recall(), km.f1_score()]) history = model.fit(x_train, y_train, epochs=30, batch_size=64, validation_data=(x_val, y_val)) 哪里出错了
时间: 2024-04-13 14:24:37 浏览: 211
在你提供的代码中,没有明显的错误。但是,有几个可能导致问题的地方需要注意:
1. 输入形状:你的输入层指定了形状为 (200,) 的输入数据,这意味着每个输入样本应该是一个长度为 200 的一维向量。确保你的输入数据与这个形状相匹配。
2. 目标值形状:你的模型输出层是一个具有 1 个单元的密集层,使用 softmax 激活函数。这意味着你的目标值应该是一个形状为 (None, 1) 的二维张量,其中每个元素表示一个二分类任务的标签。请确保你的目标值与这个形状相匹配。
3. 损失函数:你的模型使用了二元交叉熵作为损失函数。如果你的目标值是一个整数数组而不是二进制编码的标签,可能需要使用`sparse_categorical_crossentropy`作为损失函数。
请仔细检查你的输入数据、目标值以及损失函数,并确保它们与模型的期望形状相匹配。如果问题仍然存在,请提供更多错误信息或调试信息以便更具体地定位问题。
相关问题
import pandas as pd data = pd.read_csv(C:\Users\Administrator\Desktop\pythonsjwj\weibo_senti_100k.csv') data = data.dropna(); data.shape data.head() import jieba data['data_cut'] = data['review'].apply(lambda x: list(jieba.cut(x))) data.head() with open('stopword.txt','r',encoding = 'utf-8') as f: stop = f.readlines() import re stop = [re.sub(' |\n|\ufeff','',r) for r in stop] data['data_after'] = [[i for i in s if i not in stop] for s in data['data_cut']] data.head() w = [] for i in data['data_after']: w.extend(i) num_data = pd.DataFrame(pd.Series(w).value_counts()) num_data['id'] = list(range(1,len(num_data)+1)) a = lambda x:list(num_data['id'][x]) data['vec'] = data['data_after'].apply(a) data.head() from wordcloud import WordCloud import matplotlib.pyplot as plt num_words = [''.join(i) for i in data['data_after']] num_words = ''.join(num_words) num_words= re.sub(' ','',num_words) num = pd.Series(jieba.lcut(num_words)).value_counts() wc_pic = WordCloud(background_color='white',font_path=r'C:\Windows\Fonts\simhei.ttf').fit_words(num) plt.figure(figsize=(10,10)) plt.imshow(wc_pic) plt.axis('off') plt.show() from sklearn.model_selection import train_test_split from keras.preprocessing import sequence maxlen = 128 vec_data = list(sequence.pad_sequences(data['vec'],maxlen=maxlen)) x,xt,y,yt = train_test_split(vec_data,data['label'],test_size = 0.2,random_state = 123) import numpy as np x = np.array(list(x)) y = np.array(list(y)) xt = np.array(list(xt)) yt = np.array(list(yt)) x=x[:2000,:] y=y[:2000] xt=xt[:500,:] yt=yt[:500] from sklearn.svm import SVC clf = SVC(C=1, kernel = 'linear') clf.fit(x,y) from sklearn.metrics import classification_report test_pre = clf.predict(xt) report = classification_report(yt,test_pre) print(report) from keras.optimizers import SGD, RMSprop, Adagrad from keras.utils import np_utils from keras.models import Sequential from keras.layers.core import Dense, Dropout, Activation from keras.layers.embeddings import Embedding from keras.layers.recurrent import LSTM, GRU model = Sequential() model.add(Embedding(len(num_data['id'])+1,256)) model.add(Dense(32, activation='sigmoid', input_dim=100)) model.add(LSTM(128)) model.add(Dense(1)) model.add(Activation('sigmoid')) model.summary() import matplotlib.pyplot as plt import matplotlib.image as mpimg from keras.utils import plot_model plot_model(model,to_file='Lstm2.png',show_shapes=True) ls = mpimg.imread('Lstm2.png') plt.imshow(ls) plt.axis('off') plt.show() model.compile(loss='binary_crossentropy',optimizer='Adam',metrics=["accuracy"]) model.fit(x,y,validation_data=(x,y),epochs=15)
这段代码的作用是:
1. 读取一个csv文件(weibo_senti_100k.csv),并将其中的空值删除。
2. 对csv文件中的review列进行分词处理,并过滤掉停用词。
3. 用词频统计生成词云图。
4. 将数据集划分为训练集和测试集,分别使用SVM和LSTM模型进行分类预测,并输出分类报告。
具体流程如下:
1. 首先,使用pandas读取csv文件,并将其中的空值删除。
2. 然后,使用jieba对csv文件中的review列进行分词处理,并过滤掉停用词,得到分词后的结果。
3. 用词频统计生成词云图,可以通过WordCloud库实现。
4. 将分词后的结果转换成向量,并将数据集划分为训练集和测试集。使用SVM和LSTM模型进行分类预测,并输出分类报告。
其中,使用SVM模型的代码如下:
```
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC
from sklearn.metrics import classification_report
# 将数据集划分为训练集和测试集
x, xt, y, yt = train_test_split(vec_data, data['label'], test_size=0.2, random_state=123)
# 训练SVM模型
clf = SVC(C=1, kernel='linear')
clf.fit(x, y)
# 使用测试集进行预测
test_pre = clf.predict(xt)
# 输出分类报告
report = classification_report(yt, test_pre)
print(report)
```
使用LSTM模型的代码如下:
```
from keras.optimizers import Adam
from keras.utils import np_utils
from keras.models import Sequential
from keras.layers.core import Dense, Dropout, Activation
from keras.layers.embeddings import Embedding
from keras.layers.recurrent import LSTM
# 将数据集划分为训练集和测试集
x, xt, y, yt = train_test_split(vec_data, data['label'], test_size=0.2, random_state=123)
# 将标签进行one-hot编码
y = np_utils.to_categorical(y, 2)
yt = np_utils.to_categorical(yt, 2)
# 构建LSTM模型
model = Sequential()
model.add(Embedding(len(num_data['id'])+1, 256))
model.add(LSTM(128))
model.add(Dense(1))
model.add(Activation('sigmoid'))
# 编译LSTM模型
model.compile(loss='binary_crossentropy', optimizer='Adam', metrics=["accuracy"])
# 训练LSTM模型
model.fit(x, y, validation_data=(xt, yt), epochs=15)
```
最后,需要注意的是,代码中有一些缺失的部分,比如数据集的读取和停用词的来源等,需要根据实际情况进行补充。
# 词嵌入(使用预训练word2vec的词向量,自定义权重矩阵,100是输出的词向量维度) embedder = Embedding(len(vocab) + 1, 100, input_length = maxLen, weights = [embedding_matrix], trainable = False) model = Sequential() # 词嵌入相当于Embedding层 model.add(embedder) # 卷积核个数、步长 model.add(Conv1D(256, 3,padding = 'same',activation = 'relu')) model.add(MaxPool1D(maxLen - 5, 3,padding = 'same')) model.add(Conv1D(32, 3,padding = 'same',activation = 'relu')) # 扁平化,拉长 model.add(Flatten()) # 防止过拟合,随机30%不训练 model.add(Dropout(0.3)) # 全连接层 model.add(Dense(256, activation = 'relu')) model.add(Dropout(0.2)) # 因为是二分类,所以units定义为2 model.add(Dense(units = 2,activation = 'softmax')) # optimizer优化器,metrics = ['accuracy']显示精确度 model.compile(loss = 'categorical_crossentropy', optimizer = 'adam', metrics = ['accuracy']) # batch_size = 256训练256次,epochs迭代次数,validation_split拿训练集中的20%进行验证 history = model.fit(trainSeq, trainCate, batch_size = 256, epochs = 6,validation_split = 0.2) model.save("TextCNN")对于这段代码出现了一下问题FailedPreconditionError: TextCNN\variables is not a directory应该怎么解决,请修改代码给出示例
这个错误通常是因为保存模型时指定的目录不存在,可以尝试手动创建目录后再保存模型。下面是修改后的代码示例:
```
import os
from keras.models import Sequential
from keras.layers import Embedding, Conv1D, MaxPool1D, Flatten, Dropout, Dense
# 词嵌入(使用预训练word2vec的词向量,自定义权重矩阵,100是输出的词向量维度)
embedder = Embedding(len(vocab) + 1, 100, input_length=maxLen, weights=[embedding_matrix], trainable=False)
model = Sequential()
# 词嵌入相当于Embedding层
model.add(embedder)
# 卷积核个数、步长
model.add(Conv1D(256, 3, padding='same', activation='relu'))
model.add(MaxPool1D(maxLen - 5, 3, padding='same'))
model.add(Conv1D(32, 3, padding='same', activation='relu'))
# 扁平化,拉长
model.add(Flatten())
# 防止过拟合,随机30%不训练
model.add(Dropout(0.3))
# 全连接层
model.add(Dense(256, activation='relu'))
model.add(Dropout(0.2))
# 因为是二分类,所以units定义为2
model.add(Dense(units=2, activation='softmax'))
# optimizer优化器,metrics = ['accuracy']显示精确度
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
# batch_size = 256训练256次,epochs迭代次数,validation_split拿训练集中的20%进行验证
history = model.fit(trainSeq, trainCate, batch_size=256, epochs=6, validation_split=0.2)
# 创建保存模型的目录
save_dir = 'TextCNN'
if not os.path.exists(save_dir):
os.makedirs(save_dir)
# 保存模型
model.save(os.path.join(save_dir, "model.h5"))
```
注意,我在模型保存前创建了一个名为 "TextCNN" 的目录,如果该目录不存在,会先创建该目录,然后再将模型保存到该目录下,并将模型文件命名为 "model.h5"。这样就可以避免出现 "FailedPreconditionError: TextCNN\variables is not a directory" 的错误了。
阅读全文