pytorch repeat
时间: 2023-09-22 11:09:04 浏览: 110
在PyTorch中,repeat()函数可以对张量进行重复扩充。它有两种用法:
1. 当参数只有两个时,即(x.repeat(a, b)),其中a表示行的重复倍数,b表示列的重复倍数。例如,x.repeat(4, 2)会将x在行方向上重复4倍,在列方向上重复2倍。
2. 当参数有三个时,即(x.repeat(a, b, c)),其中a表示通道数的重复倍数,b表示行的重复倍数,c表示列的重复倍数。例如,x.repeat(4, 2, 1)会将x在通道数上重复4倍,在行方向上重复2倍,在列方向上不重复。
下面是一个代码例子:
```python
import torch
x = torch.tensor([1, 2, 3])
print(x.shape) # torch.Size([3])
print(x.repeat(4, 2))
"""
tensor([[1, 2, 3, 1, 2, 3],
[1, 2, 3, 1, 2, 3],
[1, 2, 3, 1, 2, 3],
[1, 2, 3, 1, 2, 3]])
"""
print(x.repeat(4, 2, 1).size()) # torch.Size([4, 2, 3])
```
总结起来,repeat()函数可以根据传入的倍数,在指定的维度上对张量进行重复扩充。<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* [Pytorch中torch.repeat()函数解析](https://blog.csdn.net/flyingluohaipeng/article/details/125039368)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 33.333333333333336%"]
- *2* [【Pytorch】 repeat()的用法详解](https://blog.csdn.net/m0_46412065/article/details/128043821)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 33.333333333333336%"]
- *3* [pytorch中repeat方法](https://blog.csdn.net/weixin_42060572/article/details/114254532)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 33.333333333333336%"]
[ .reference_list ]
阅读全文