多种方法解决iris数据集识别 (1)构建SVM程序,实现对iris数据集的分类。 (2)要求分别使用线性SVM和核化SVM方法实现。并对比分析两种方法的区别。 (3)k近邻、决策树、朴素贝叶斯实现分类代码
时间: 2024-06-18 11:02:58 浏览: 104
对于iris数据集的分类,可以采用多种方法来解决。下面我将分别介绍SVM、k近邻、决策树和朴素贝叶斯方法的分类代码实现:
1. SVM分类方法:
(1)使用线性SVM方法实现:
可以使用sklearn库中的LinearSVC模型来实现,代码如下:
```
from sklearn.svm import LinearSVC
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
iris = load_iris()
X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.3, random_state=42)
# 构建模型
clf = LinearSVC(random_state=42)
clf.fit(X_train, y_train)
# 测试模型
y_pred = clf.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
print("Accuracy: {:.2f}%".format(accuracy*100))
```
(2)使用核化SVM方法实现:
可以使用sklearn库中的SVC模型来实现,其中kernel参数可以选择不同的核函数,比如rbf、poly、sigmoid等。代码如下:
```
from sklearn.svm import SVC
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
iris = load_iris()
X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.3, random_state=42)
# 构建模型
clf = SVC(kernel='rbf', random_state=42)
clf.fit(X_train, y_train)
# 测试模型
y_pred = clf.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
print("Accuracy: {:.2f}%".format(accuracy*100))
```
2. k近邻分类方法:
可以使用sklearn库中的KNeighborsClassifier模型来实现,代码如下:
```
from sklearn.neighbors import KNeighborsClassifier
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
iris = load_iris()
X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.3, random_state=42)
# 构建模型
clf = KNeighborsClassifier(n_neighbors=5)
clf.fit(X_train, y_train)
# 测试模型
y_pred = clf.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
print("Accuracy: {:.2f}%".format(accuracy*100))
```
3. 决策树分类方法:
可以使用sklearn库中的DecisionTreeClassifier模型来实现,代码如下:
```
from sklearn.tree import DecisionTreeClassifier
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
iris = load_iris()
X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.3, random_state=42)
# 构建模型
clf = DecisionTreeClassifier(random_state=42)
clf.fit(X_train, y_train)
# 测试模型
y_pred = clf.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
print("Accuracy: {:.2f}%".format(accuracy*100))
```
4. 朴素贝叶斯分类方法:
可以使用sklearn库中的GaussianNB模型来实现,代码如下:
```
from sklearn.naive_bayes import GaussianNB
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
iris = load_iris()
X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.3, random_state=42)
# 构建模型
clf = GaussianNB()
clf.fit(X_train, y_train)
# 测试模型
y_pred = clf.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
print("Accuracy: {:.2f}%".format(accuracy*100))
```
以上是四种常用的机器学习方法,对于SVM方法,线性SVM和核化SVM的区别在于核函数的不同,线性SVM的核函数为'linear',而核化SVM的核函数可以选择'rbf'、'poly'或'sigmoid'等不同类型的核函数。在实际应用中,可以根据数据集的特点和实际需求选择不同的机器学习方法。
阅读全文