opencv目标识别
时间: 2023-10-25 12:07:03 浏览: 98
opencv目标检测
4星 · 用户满意度95%
在OpenCV中实现目标识别可以使用深度学习模型和OpenCV的dnn模块。首先,您需要下载并加载预训练的深度学习模型。您可以使用以下代码加载模型:
```python
import cv2
model = cv2.dnn.readNetFromTensorflow('frozen_inference_graph.pb', 'graph.pbtxt')
```
接下来,您需要读取要进行目标识别的图像。然后,将图像转换为适合模型输入的blob,并将其设置为模型的输入:
```python
image = cv2.imread('your_image.jpg')
(h, w) = image.shape[:2]
blob = cv2.dnn.blobFromImage(image, size=(300, 300), swapRB=True, crop=False)
model.setInput(blob)
```
之后,您可以通过调用`model.forward()`来进行目标检测,该函数将返回检测结果。您可以遍历检测结果并根据置信度绘制边界框:
```python
detections = model.forward()
for i in range(detections.shape * np.array([w, h, w, h])
(startX, startY, endX, endY) = box.astype(int)
cv2.rectangle(image, (startX, startY), (endX, endY), (255, 0, 0), 2)
```
最后,您可以显示带有边界框的图像:
```python
cv2.imshow('Object Detection', image)
cv2.waitKey(0)
cv2.destroyAllWindows()
```
以上代码演示了如何使用OpenCV实现目标识别算法。您可以根据需要选择适合您的深度学习模型,并相应地调整代码中的参数和路径。<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* *3* [如何在OpenCV中实现目标检测算法?](https://blog.csdn.net/huidhsu/article/details/131520777)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"]
- *2* [opencv c++ 目标识别 深度神经网络模型 网络模型文件及代码下载](https://download.csdn.net/download/m0_51233386/87737548)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"]
[ .reference_list ]
阅读全文