ECC-WBCE 损失函数代码
时间: 2024-03-26 09:32:58 浏览: 131
损失函数为Cross entropy的手写数字识别神经网络代码与实现
ECC-WBCE(Enhanced Cross-Entropy with Weighted Binary Cross-Entropy)是一种用于二分类任务的损失函数,它结合了交叉熵损失和加权二元交叉熵损失。下面是ECC-WBCE损失函数的代码示例:
```python
import torch
import torch.nn as nn
class ECC_WBCE_Loss(nn.Module):
def __init__(self, alpha=0.5, beta=0.5, epsilon=1e-7):
super(ECC_WBCE_Loss, self).__init__()
self.alpha = alpha
self.beta = beta
self.epsilon = epsilon
def forward(self, y_pred, y_true):
y_pred = torch.clamp(y_pred, self.epsilon, 1.0 - self.epsilon)
loss_ce = - (self.alpha * y_true * torch.log(y_pred) + (1 - self.alpha) * (1 - y_true) * torch.log(1 - y_pred))
loss_wbce = - (self.beta * y_true * torch.log(y_pred) + (1 - self.beta) * (1 - y_true) * torch.log(1 - y_pred))
loss = loss_ce + loss_wbce
return loss.mean()
```
在上述代码中,`ECC_WBCE_Loss`是一个继承自`nn.Module`的自定义损失函数类。在`forward`方法中,首先对预测值进行限制,避免取对数时出现无穷大或无穷小的情况。然后分别计算交叉熵损失和加权二元交叉熵损失,并将两者相加得到最终的损失值。
阅读全文