时间序列异常检测python
时间: 2023-08-29 18:14:20 浏览: 169
基于Python的自动化时间序列异常检测系统源码.zip
5星 · 资源好评率100%
时间序列异常检测是指通过分析时间序列数据中的异常值或异常模式,来识别与正常行为不符的数据点或时间段。在Python中,有多种方法和工具可以用于时间序列异常检测。
其中,引用提到的基于Python的自动化时间序列异常检测系统源码.zip是一个针对多变量时间序列数据的异常检测系统,它提供了用于构建基于机器学习的异常检测系统的模块,包括数据处理和时间序列处理等功能。
引用提到了一些常用的时间序列异常检测方法,包括3sigma、z-score、箱体法和多维度异常值判断法。3sigma方法基于正态分布,在数据值超过±3个标准差时认为是异常值。z-score方法通过测量数据值与平均值的距离来判断异常值。箱体法基于数据的四分位值来判断异常值。而多维度异常值判断法则通过综合考虑数据特征的多个维度来判断异常值。
引用介绍了使用Pycaret库进行时间序列异常检测的方法。通过设置异常值比例的阈值fraction,选择异常值算法(如'knn'、'cluster'、'iforest'、'svm'等),可以对数据集进行建模和预测,并得到检测结果。通过绘制散点图或其他可视化方式,可以直观地展示异常值和正常值的区别。
综上所述,时间序列异常检测在Python中可以使用多种方法和工具来实现,具体选择哪种方法可以根据具体需求和数据特点来决定。<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* [基于Python的自动化时间序列异常检测系统源码.zip](https://download.csdn.net/download/weixin_55305220/87260278)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"]
- *2* *3* [基于Python的时间序列异常值检测](https://blog.csdn.net/weixin_42608414/article/details/129270747)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"]
[ .reference_list ]
阅读全文