基于SVM的抑郁症测试代码
时间: 2024-12-15 17:12:21 浏览: 4
基于支持向量机(SVM,Support Vector Machine)的抑郁症测试通常涉及到机器学习中的情感分析或心理特征预测。以下是使用Python语言scikit-learn库实现一个简单例子的基本步骤:
```python
# 导入必要的库
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.svm import SVC
from sklearn.metrics import accuracy_score
# 假设你有一个包含文本数据和抑郁症标签的数据集
data = pd.read_csv('depression_dataset.csv')
X = data['text'] # 文本描述
y = data['label'] # 抑郁症标签(0表示非抑郁,1表示抑郁)
# 数据预处理(例如分词、去除停用词等)
vectorizer = CountVectorizer()
X_vectorized = vectorizer.fit_transform(X)
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X_vectorized, y, test_size=0.2, random_state=42)
# 使用SVM模型
svm_model = SVC(kernel='linear') # 或者尝试其他内核如'poly'或'rbf'
svm_model.fit(X_train, y_train)
# 预测
y_pred = svm_model.predict(X_test)
# 评估性能
accuracy = accuracy_score(y_test, y_pred)
print("Accuracy:", accuracy)
#
阅读全文