super_real_only
时间: 2023-07-14 10:03:49 浏览: 196
"super_read_only" 是一个MySQL数据库的配置参数,它指定了数据库实例是否只允许读取操作。当设置为 "super_read_only" 时,只有具有 SUPER 权限的用户才能执行写操作,其他用户只能进行读取操作。
这个配置参数通常用于确保数据库的数据完整性和安全性。当数据库实例处于只读模式时,它可以防止意外的写入操作对数据产生不可逆的影响。这在某些情况下非常有用,比如在进行数据库备份、进行故障转移或进行维护操作时。
要启用 "super_read_only" 配置参数,您可以在 MySQL 配置文件中添加以下行:
```
super-read-only = 1
```
或者,您也可以在启动 MySQL 实例时使用命令行选项来设置该参数:
```
mysqld --super-read-only=1
```
请注意,设置了 "super_read_only" 后,只有具有 SUPER 权限的用户才能执行写操作。如果您需要执行写入操作,请确保使用具有适当权限的用户进行操作。同时,也要注意在完成所需的写入操作后将 "super_read_only" 设置恢复为适当的值,以确保数据库的正常运行。
相关问题
class BayarConv2d(nn.Module): def __init__(self, in_channels, out_channels, kernel_size=5, stride=1, padding=0): self.in_channels = in_channels self.out_channels = out_channels self.kernel_size = kernel_size self.stride = stride self.padding = padding self.minus1 = (torch.ones(self.in_channels, self.out_channels, 1) * -1.000) super(BayarConv2d, self).__init__() # only (kernel_size ** 2 - 1) trainable params as the center element is always -1 self.kernel = nn.Parameter(torch.rand(self.in_channels, self.out_channels, kernel_size ** 2 - 1), requires_grad=True) def bayarConstraint(self): self.kernel.data = self.kernel.permute(2, 0, 1) self.kernel.data = torch.div(self.kernel.data, self.kernel.data.sum(0)) self.kernel.data = self.kernel.permute(1, 2, 0) ctr = self.kernel_size ** 2 // 2 real_kernel = torch.cat((self.kernel[:, :, :ctr], self.minus1.to(self.kernel.device), self.kernel[:, :, ctr:]), dim=2) real_kernel = real_kernel.reshape((self.out_channels, self.in_channels, self.kernel_size, self.kernel_size)) return real_kernel def forward(self, x): x = F.conv2d(x, self.bayarConstraint(), stride=self.stride, padding=self.padding) return x这个类最后得到了什么
这个类实现了一个卷积神经网络层,其中使用了贝叶斯方法对卷积核进行约束,使其满足一定的先验分布。
通过类的初始化函数,用户可以指定输入通道数、输出通道数、卷积核大小、卷积步长和填充大小等参数。
在类的初始化函数中,首先通过类的成员变量存储输入通道数、输出通道数、卷积核大小、卷积步长和填充大小等参数。然后,使用 PyTorch 的 nn.Parameter 函数创建一个可训练的卷积核张量 self.kernel。这个张量的大小为 (in_channels, out_channels, kernel_size ** 2 - 1),其中 kernel_size ** 2 - 1 表示卷积核中除去中心位置的参数数量,因为中心位置的参数总是固定为 -1。
在 BayarConv2d 类中,还定义了一个名为 bayarConstraint 的函数,用于对卷积核进行约束。在这个函数中,首先将 self.kernel 的维度转换为 (kernel_size ** 2 - 1, in_channels, out_channels),然后对 self.kernel 的第一个维度进行归一化,使得每个卷积核的参数总和为 1。接着,将 self.kernel 的维度再次转换为 (in_channels, out_channels, kernel_size ** 2 - 1),然后使用 torch.cat() 函数将中心位置的 -1 插入到 self.kernel 的第三个维度的中心位置,得到最终的约束卷积核 real_kernel。最后,将 real_kernel 的维度转换为 (out_channels, in_channels, kernel_size, kernel_size)。
最后,定义了 forward 函数,实现了 BayarConv2d 类的前向传播过程。在 forward 函数中,使用 PyTorch 的 F.conv2d() 函数对输入进行卷积操作,其中卷积核为调用 bayarConstraint 函数得到的约束卷积核 real_kernel。
阅读全文