信息学奥赛一本通1126
时间: 2024-01-24 17:03:33 浏览: 110
根据引用[1]和引用,信息学奥赛一本通1126是关于矩阵转置的问题。问题描述如下:
给定一个n行m列的矩阵A,要求将其转置为m行n列的矩阵B。即B的第i行第j列的元素等于A的第j行第i列的元素。
以下是一个示例代码,演示了如何实现矩阵转置:
```python
n, m = map(int, input().split()) # 输入矩阵A的行数和列数
A = [] # 存储矩阵A的元素
for i in range(n):
row = list(map(int, input().split())) # 输入矩阵A的一行元素
A.append(row)
B = [] # 存储矩阵B的元素
for j in range(m):
col = [] # 存储矩阵B的一列元素
for i in range(n):
col.append(A[i][j])
B.append(col)
# 输出矩阵B
for i in range(m):
for j in range(n):
print(B[i][j], end=' ')
print()
```
该代码首先输入矩阵A的行数和列数,然后逐行输入矩阵A的元素。接下来,通过两层循环将矩阵A的元素转置到矩阵B中。最后,按照转置后的形式输出矩阵B的元素。
相关问题
信息学奥赛一本通1412
根据提供的引用内容,信息学奥赛一本通1412是一个关于二进制分类的问题。问题要求统计从1到1000之间的数字中,二进制表示中1的个数大于0的个数的数字个数和0的个数大于1的个数的数字个数。下面是一个C语言的参考代码:
```c
#include <stdio.h>
int kind(int n) {
int zero_count = 0, one_count = 0;
while (n > 0) {
if (n % 2 == 1) {
one_count++;
} else {
zero_count++;
}
n /= 2;
}
return one_count > zero_count ? 1 : 2;
}
int main() {
int i, a_count = 0, b_count = 0;
for (i = 1; i <= 1000; i++) {
if (kind(i) == 1) {
a_count++;
} else {
b_count++;
}
}
printf("%d %d\n", a_count, b_count);
return 0;
}
```
该代码通过循环遍历从1到1000的数字,调用`kind`函数判断每个数字属于哪一类,并统计每一类的个数。最后输出结果。根据题目要求,该代码输出的结果是AA类数和BB类数的个数。
信息学奥赛一本通1069
这道题目要求我们计算一个整数a的n次方,且结果的绝对值不超过10000001000000。我们可以使用快速幂算法来解决这个问题。
快速幂算法的基本思想是:将指数n转化为二进制数,然后根据二进制数的每一位来计算幂次方。例如,如果n的二进制表示为1011,那么a^n=a^(2^0)*a^(2^1)*a^(2^3)。
下面是使用C++实现快速幂算法的代码:
```cpp
#include <iostream>
using namespace std;
long long quick_pow(long long a, int n) {
long long res = 1;
while (n) {
if (n & 1) res *= a;
a *= a;
n >>= 1;
}
return res;
}
int main() {
long long a;
int n;
cin >> a >> n;
cout << quick_pow(a, n) << endl;
return 0;
}
```
阅读全文