torch.nn.Embedding
时间: 2023-08-25 17:02:55 浏览: 103
`torch.nn.Embedding`是PyTorch中的一个类,用于定义一个可以学习的嵌入层。嵌入层将离散的输入(如单词或类别)映射到连续的向量空间中,以便模型能够更好地处理和理解这些输入。
在创建`Embedding`对象时,需要指定两个参数:`num_embeddings`和`embedding_dim`。`num_embeddings`表示嵌入层中唯一标识符的总数量,而`embedding_dim`表示每个嵌入向量的维度。例如,如果我们要将一个大小为10000的词汇表映射到一个300维的嵌入空间中,我们可以这样创建一个嵌入层:
```python
import torch
import torch.nn as nn
embedding = nn.Embedding(num_embeddings=10000, embedding_dim=300)
```
要使用嵌入层,只需将整数索引传递给嵌入对象即可获得相应的嵌入向量。例如,假设我们有一个大小为(32, 10)的整数张量`input`,其中32是批量大小,10是序列长度。我们可以通过以下方式获取这个序列的嵌入表示:
```python
input_embedded = embedding(input)
```
`input_embedded`将是一个大小为(32, 10, 300)的张量,其中每个单词都用一个300维的向量表示。
嵌入层的权重是可以学习的,模型在训练过程中会自动调整这些权重以最小化损失函数。
相关问题
torch.nn.embedding
torch.nn.Embedding是PyTorch中的一个类,用于将整数索引映射到向量表示形式的嵌入层。它可以用于自然语言处理任务中对词语进行编码表示。<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* *2* *3* [【Pytorch基础教程28】浅谈torch.nn.embedding](https://blog.csdn.net/qq_35812205/article/details/125303611)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 100%"]
[ .reference_list ]
torch.nn.embedding.weight.data
torch.nn.embedding.weight.data is a tensor that represents the weights of the embedding layer in a neural network. It is a 2-dimensional tensor of size (num_embeddings, embedding_dim), where num_embeddings is the total number of embeddings in the layer and embedding_dim is the size of each embedding vector.
For example, if the embedding layer has 1000 embeddings and each embedding vector is of size 300, then the size of torch.nn.embedding.weight.data would be (1000, 300).
The values in this tensor are usually randomly initialized and updated during the training process using backpropagation. The embedding layer is used to convert categorical variables (such as words in natural language processing) into continuous vectors that can be fed into a neural network.
阅读全文